
mÃ¶p

Deliverable D2.2

Initial Report on PoC Implementation of a Piccolo Node

Editor: Marian Ulbricht – InnoRoute
Deliverable nature: Report (R)
Dissemination level:
(Confidentiality)

Public

Contractual delivery
date:

September 30, 2021

Actual delivery date: September 30, 2021
Suggested readers: Researchers, developers and technologists interested in edge computing and

the convergence of networking and computing.
Version: 1.0
Total number of
pages:

43

Keywords: Architecture, Distributed Computing, Protocols, Node
mÃ¶p

Abstract

This document describes the state of the Piccolo node Proof of Concept implementations,
at the halfway point of the project.

mÃ¶p

mailto:ulbricht@innoroute.de
https://innoroute.com/

PICCOLO Deliverable D2.2

Disclaimer

This document contains material, which is the copyright of certain Piccolo consortium parties, and
may not be reproduced or copied without permission. This version of the document is Public.

The commercial use of any information contained in this document may require a licence from the
proprietor of that information.

Neither the PICCOLO consortium as a whole, nor a certain part of the PICCOLO consortium, warrant
that the information contained in this document is capable of use, nor that use of the information is
free from risk, accepting no liability for loss or damage suffered by any person using this information.

This work was done within the EU CELTIC-NEXT project PICCOLO (Contract No. C2019/2-2). The
project is supported in part by the German Federal Ministry of Economic Affairs and Energy (BMWi)
and managed by the project agency of the German Aerospace Center (DLR) (under Contract No.
01MT20005A). The project also receives funding awarded by UK Research and Innovation through
the Industrial Strategy Challenge Fund. The project is also funded by each Partner.

Impressum

[Full project title] Piccolo: In-Network Compute for 5G Services
[Short project title] PICCOLO
[Number and title of work-package] WP2 Piccolo Node
[Number and title of task] T2.2 Piccolo Node development
[Document title] D2.2 Initial Report on PoC Implementation of a Piccolo Node
[Editor: Name, company] Marian Ulbricht, InnoRoute
[Work-package leader: Name, company] Chris Adeniyi-Jones, ARM

Copyright notice

© 2020 – 2022 Piccolo Consortium

CO PICCOLO consortium 2021 Page 1 of (43)

mailto:Chris.Adeniyi-Jones@arm.com

PICCOLO Deliverable D2.2

Executive Summary

The Piccolo Node is an individual node in a Piccolo network. It delivers an open, low latency, effi-
cient, secure, in-network compute implementation.

This deliverable D2.2 "Initial Report on PoC Implementation of a Piccolo Node" describes the current
state of the various Proof of Concept (PoC) implementations of Piccolo nodes.

CO PICCOLO consortium 2021 Page 2 of (43)

PICCOLO Deliverable D2.2

List of Authors

Company Author
ARM Ltd. Chris Adeniyi-Jones
British Telecommunications plc Adam Broadbent, Philip Eardley, Andy Reid,

Peter Willis
Fluentic Networks Ltd. Ioannis Psaras, Alex Tsakrilis
InnoRoute GmbH Andreas Foglar, Marian Ulbricht, Surik Krdoyan
Robert Bosch GmbH Dennis Grewe, Naresh Nayak, Uthra Ambalavanan
Sensing Feeling Dan Browning, Jag Minhas, Chris Stevens
Stritzinger GmbH Mirjam Friesen, Sascha Kattelmann, Peer Stritzinger,

Stefan Timm
Technical University Munich Jörg Ott, Raphael Hetzel, Nitinder Mohan,

Teemu Kärkkäinen
University of Applied Science
Emden/Leer

Dirk Kutscher, Laura al Wardani, T M Rayhan Gias

CO PICCOLO consortium 2021 Page 3 of (43)

mailto:Chris.Adeniyi-Jones@arm.com
mailto:adam.broadbent@bt.com
mailto:philip.eardley@bt.com
mailto:andy.bd.reid@bt.com
mailto:peter.j.willis@bt.com
mailto:yiannis.psarras@protonmail.com
mailto:alex.tsakrilis@gmail.com
mailto:foglar@innoroute.com
mailto:ulbrcht@innoroute.de
mailto:surik@innoroute.de
mailto:dennis.grewe@de.bosch.com
mailto:naresh.nayak@de.bosch.com
mailto:uthra.ambalavanan@de.bosch.com
mailto:dan@sensingfeeling.com
mailto:jag@sensingfeeling.com
mailto:chris@sensingfeeling.com
mailto:mirjam.friesen@stritzinger.com
mailto:sascha.kattelmann@stritzinger.com
mailto:peer@stritzinger.com
mailto:stefan.timm@stritzinger.com
mailto:ott@in.tum.de
mailto:hetzel@in.tum.de
mailto:mohan@in.tum.de
mailto:kaerkkae@in.tum.de
mailto:dirk.kutscher@hs-emden-leer.de
mailto:laura.al.wardani@hs-emden-leer.de
mailto:rayhan.gias@hs-emden-leer.de

PICCOLO Deliverable D2.2

Table of Contents

Executive summary . 2
List of Authors . 3
List of Figures . 5
Abbreviations . 6
Definitions . 7

1 Introduction 8

2 Piccolo node general view 9
2.1 Piccolo Agent as a plug-in architecture . 10
2.2 Multi-Context Nature of the Piccolo API . 11

3 Piccolo node implementations 13
3.1 Behavioural Risk . 13

3.1.1 Trusted In-Network Computing Node . 14
3.1.2 Integration with the Behavioural Risk PoC 18

3.2 Smart Factory . 20
3.2.1 Node design . 20
3.2.2 API considerations . 22

3.3 Piccolo docker node . 23
3.3.1 Basic Docker node . 24

3.4 𝜇Actor . 27

4 PoC Isolation and Security discussion 31
4.1 Lightweight Virtualization . 31

4.1.1 Results . 32
4.1.2 Further work . 33

4.2 Behavioural Risk Monitoring Proof of Concept - Security Concepts 33
4.2.1 Next Steps . 35

5 Conclusion 37

A Appendix 41
A.1 Example: configuration of Docker Time-Sensitive Networking node 41
A.2 Example: IEC 61499 function block . 41

CO PICCOLO consortium 2021 Page 4 of (43)

PICCOLO Deliverable D2.2

List of Figures

1 Abstract API and Protocols . 9
2 Plugin model for the Piccolo node API . 10
3 Four example contexts in the use of the Piccolo node API 12
4 Vehicle Data Processing Pipeline for Behavioral Risk Monitoring 13
5 Intel NUC as a Piccolo Node enabler . 14
6 TINC as a Piccolo Node. 15
7 State machine diagram presenting the lifecycle of a talent’s deployment on a TINC/Pic-

colo Node . 19
8 Piccolo Agent, Information Base and Optimization Layer 21
9 GRiSP2 standard board . 21
10 Smart Factory Node Architecture, Agent is also processed as Actor 22
11 TrustNode TSN router as enabler device for the TSN OPCUA PoC 24
12 RealTimePI TSN endpoint as enabler device for the TSN OPCUA PoC 24
13 Basic docker node block diagram (with PoC specific instances loaded) 25
14 Block diagram of basic docker node’s components 26
15 𝜇Actor as a Piccolo Node. 27
16 Comparison of native containers vs Kata Containers 31
17 Using Kata Containers as an Execution Environment 32
18 Using Kata Containers as system component to deploy Execution Environments . . . 32
19 Converting a native application to a TINC/Piccolo function along with attestation

operation. 36
20 Graphic representation of the example function block 42
21 Grapic representation of the state machine of the example function block 43

CO PICCOLO consortium 2021 Page 5 of (43)

PICCOLO Deliverable D2.2

Abbreviations

API Application Programming Interface

AWS Amazon Web Services

BEAM Bogdan’s (or Björn’s) Erlang Abstract Machine

CPU Central Processing Unit

DHT Distributed Hash Table

EE Execution Environment

FPGA Field Programmable Gate Array

I4.0 Industry 4.0

JSON JavaScript Object Notation

LWVM Lightweight Virtual Machine

MMI Memory Mapped Interface

NUC Next Unit of Computing

OPC Open Platform Communications

OPCUA OPC Unified Architecture

OTP Open Telecom Platform

PoC Proof of Concept

REST Representational State Transfer

RPC Remote Procedure Call

TAS Time Aware Shaper

TEE Trusted Execution Environment

TINC Trusted In-Network Computing

TLS Transport Level Security

TSN Time-Sensitive Networking

UI User Interface

VM Virtual Machine

VPE Visual Processing Engine

WASM WebAssembly

CO PICCOLO consortium 2021 Page 6 of (43)

PICCOLO Deliverable D2.2

Definitions

Trusted Computing Base (TCB): An entire combination set of protection mechanisms within a com-
puter system, including hardware, firmware, and software, responsible for enforcing a security
policy.

TrustNode: Hardware-accelerated routing devices that include a Field Programmable Gate Array
(FPGA) for fast routing and a supporting Central Processing Unit (CPU) for advanced packet
processing. For more information, please refer to http://TrustNo.de.

RaspberryPI: Well-known singleboard computer for rapid prototyping and research. Designed in
the UK. For more information, please refer to https://www.raspberrypi.org/.

RealTimePI: RaspberryPI with additional RealTimeHAT (Hardware Attached on Top) to enable
hardware accelerated Time-Sensitive Networking (TSN) and time synchronisation features on
the RaspberryPI. For more information, please refer to https://innoroute.com/realtimehat/.

ESP32: Microcontroller with built-in Wi-Fi connectivity manufactured by Espressif Systems. For
more information, please refer to https://www.espressif.com/en/products/socs/esp32.

CO PICCOLO consortium 2021 Page 7 of (43)

http://TrustNo.de
https://www.raspberrypi.org/
https://innoroute.com/realtimehat/
https://www.espressif.com/en/products/socs/esp32

PICCOLO Deliverable D2.2

1 Introduction

This document captures the current status of our work on Piccolo nodes, that is the individual nodes
in an In-Network Computing system.

We are developing various implementations of a Piccolo node, in order to address the various needs of
the different Proof of Concept (PoC) demonstrators and use cases. This bottom-up approach enables
us to make progress, get the PoC demos working, and give us the opportunity to learn-by-doing.

At this intermediate point within the project, the 4 different PoC Piccolo nodes described in this doc-
ument do not yet fully match the concepts of Del2.1 [1]. That document took a top-down approach
and defined a high-level node architecture and interfaces. Future work will examine the compromises
taken so far in order to accelerate implementation, and update the architecture in the light of the prac-
tical lessons. In this document, each node description contains adapted versions of the architecture
and interface figures of Del2.1 [1]. The Conclusions chapter gives some challenges for each Piccolo
node implementation, together with directions for further development.

CO PICCOLO consortium 2021 Page 8 of (43)

PICCOLO Deliverable D2.2

2 Piccolo node general view

In section 5 of the first deliverable on the Piccolo node (D2.1) [1], we set out an initial node architec-
ture for a Piccolo node which could embrace a range of environments for hosting Piccolo functions.
The primary reference diagram is reproduced again in Figure 1.

Interfaces: Abstract APIs + Protocols

Hardware (generic)

Operating System (or VMM)

Hardware

(special purpose)

Hardware

(security)

Piccolo Node “Management”

P
ic

c
o

lo
 A

g
e

n
t

Piccolo EE #nPiccolo EE #1

EE #1 Instance #1 EE #1 Instance #k…

Runtime Runtime

EE #n Instance #1

Runtime

…

Fn ()

F2 ()

F1 ()

Gn ()

G2 ()

G1 ()

Hn ()

H2 ()

H1 ()

C
o

n
tr

o
l

p
la

n
e

Data plane(s)

1

2

3

5 6

7

4

8A

CB

9

10 11

Figure 1: Abstract API and Protocols (note: EE = Execution Environment ; VMM = Virtual Machine
Manager ; F1, G1, H1 etc are different functions)

In this next stage of the project, a number of PoCs have been developed, each one focused on a
specific use case. An important objective of these PoCs is to understand efficient implementation
for each one without any strong "top-down" architectural constraints. We hope this ’bottom-up’
development will make it possible to gain important insights which would not necessarily be apparent
prior to developing each PoC. Also, for the overall architecture to be developed in such a way that
it is fully compatible with a wide variety of specific implementation scenarios and does not place
unforeseen and unnecessary constraints on specific implementations.

As these PoCs mature the learning from them will be understood and taken into account. Over the
coming months the project will develop a more complete overall architecture and specification. This
report is therefore focused on the details of each PoC and does not, at this stage, consider how the
significant implementation differences between them will be integrated into a single coherent and
detailed architecture; that will come later in the project.

A particularly important feature of the node architecture is the Piccolo node’s Application Program-
ming Interface (API) (protocol A) in Figure 1. It is already evident that it is unlikely that any API

CO PICCOLO consortium 2021 Page 9 of (43)

PICCOLO Deliverable D2.2

definition developed by Piccolo will be immediately adopted and implemented directly by each and
every hosting and execution environment over which Piccolo has little influence. This suggests that
Piccolo should adopt a "plug-in" architecture to support the Piccolo node API as outlined below.

A second significant feature to emerge from the layered hierarchy inherent in the initial node archi-
tecture of Figure 1 is that there are many different contexts and each context may have different users.
This suggests that the Piccolo node API needs to support access control to different users according
to context.

2.1 Piccolo Agent as a plug-in architecture

In order to interact with the APIs presented by existing Execution Environments (EEs), some of which
are used in the PoCs described in Section 3 below, the Piccolo agent can act as an interface translator
between a single common Piccolo node API and these EE specific APIs. This is illustrated in Figure 2.

Figure 2: Plugin model for the Piccolo node API

Given that there are a range of different types of EEs with different APIs, an efficient way of im-
plementing translation is to use a plug-in architecture. In this case, the Piccolo agent has a common
information model which is consistent with the Piccolo node API. When there is a requirement to
interface to a specific EE API, a specific module of code can be written which can turn protocol trans-
actions on the Piccolo node API into protocol transactions on the EE specific API. This translation

CO PICCOLO consortium 2021 Page 10 of (43)

PICCOLO Deliverable D2.2

can make use of the common information model both as a means of correctly translating parameters
which may have different syntax and also as a means of holding any state if this is necessary to handle
any differences in protocol message sequencing.

It may also be necessary to adjust for information difference between the Piccolo node API and the
EE specific API. For example, as the Piccolo node API is likely to be more abstract than the EE
specific API, the EE specific API may require more parameters than can be supplied by the Piccolo
node API. In this case, the Piccolo agent can:

• fill in default values;

• use a policy to calculate values based on other information held by the Piccolo agent;

• provide a pass through so that the user can set the values (this solution is less ideal as the Piccolo
node API is now no longer a sufficient API).

It is possible, if less likely that the Piccolo API allows for a greater level of configuration than is
supported by the specific EE API. In this case, the Piccolo agent plugin can translate the requirement
to whatever more granular EE specific configuration can satisfy the request. It is also possible with
this plugin architecture to physically separate the Piccolo agent from the execution hardware which
may be an advantage for some very lightweight execution hardware.

2.2 Multi-Context Nature of the Piccolo API

A second aspect to Piccolo agent which will be addressed when the more detailed work on developing
the Piccolo node API is undertaken in the coming months is a security model which includes context.
How different contexts arise is illustrated in Figure 3 which shows four different contexts as different
layers of software are added. The ownership at each stage may be different and it may be important,
for example, that owners at higher layers are not allowed access to configuration information and
control at lower layers.

CO PICCOLO consortium 2021 Page 11 of (43)

PICCOLO Deliverable D2.2

((a)) Context 1 – Create EE type #1 ((b)) Context 2 – Create EE#1 instance #1

((c)) Context 3 – Create function type #1 ((d)) Context 4 – Create function #1 instance #1

Figure 3: Four example contexts in the use of the Piccolo node API

CO PICCOLO consortium 2021 Page 12 of (43)

PICCOLO Deliverable D2.2

3 Piccolo node implementations

3.1 Behavioural Risk

The behavioral risk monitoring PoC, as described in D1.1 and D1.2 [2, 3], deals with the computation
and evaluation of a risk index for a driving trip. For this PoC, we install interior cameras within the
cockpit of the vehicle, being able to observe the driver physical behaviour and reactions. Additionally,
in-vehicular data (e.g. acceleration, velocity, steering angle etc.) is available to be shared with the
camera data to capture how the vehicle is being driven. Together the captured data (vision along with
in-vehicular data) is processed in a data processing pipeline implementing a behavioral risk evaluation
model. The implemented data processing pipeline functionally consists of two parts: (i) the vision
processing pipeline, and (ii) the in-vehicular data processing pipeline (cf. Figure 4).

In the context of this document, the node specific compute aspects required to support the data pro-
cessing pipeline are of interest. As presented in Piccolo D1.2 [3], there are limiting factors to execute
compute intensive operations within the vehicle. As an example of a limiting factor, in-vehicle com-
puting platforms like vehicle computers are restricted regarding their compute capabilities and have
to be used judiciously, and therefore, the execution of the entire pipeline (cf. Figure 4) within the
vehicle is infeasible. Hence, the components of the pipeline within the vehicle are limited to only
those which are necessary for data acquisition. For example: the processing of camera stream to gen-
erate real-time video streams for further processing; the capture of data from in-vehicle field buses
such as Controller Area Networks to make them available as data streams via the OBD-II interface.
In order to handle the compute intensive operations of processing and augmenting the different data
streams, the business logic implementing the behavioural risk monitoring is hosted within the Piccolo
infrastructure.

Figure 4: Vehicle Data Processing Pipeline for Behavioral Risk Monitoring as an example of one out of
two different processing pipelines to be executed on Piccolo nodes.

In order to handle the compute limitations mentioned, e.g., handle complex workflow definitions for
IoTea Talents, dynamically offloading the compute load to Piccolo nodes within the infrastructure is
desirable. In the Risk Behavioral Monitoring prototype, we are using the Trusted In-Network Com-
puting (TINC) Piccolo node for offloading functions. The platform allows for flexible deployment
of services and functions and offers the option to either execute them in a secure or non-secure fash-
ion dependent on the business goal of the service/function provider. For example, in the context of

CO PICCOLO consortium 2021 Page 13 of (43)

PICCOLO Deliverable D2.2

the vehicle processing pipeline, IoTea Talents implementing business logic to fuse data from several
vehicles might be executed in a secure fashion, while other talents might not have this requirement,
being executed in a normal fashion.

The following subsection provides an overview of the TINC platform, representing a Piccolo Node,
and illustrate design principles and the implemented Piccolo APIs.

3.1.1 Trusted In-Network Computing Node

The Trusted In-Network Computing node, is a Golang implementation of the abstract Piccolo Node
and offers a platform to execute functions in the form of Docker containers in a both a normal and
a secure manner by utilizing Trusted EEs [4]. The TINC implementation is used in the Behavioural
Risk Monitoring PoC as a basis for compute nodes available at the edge of a communication infras-
tructure. It is based upon the concepts and API specifications described in D2.1 [1]. The TINC node
is a x86 device that uses Linux as an operating system, and additionally provides Intel Software Guard
eXtensions (SGX) [5] support implemented as part of the TINC-engine. The TINC-engine itself is an
implementation of the conceptual Piccolo Agent 1. For the PoC we use an Intel Next Unit of Comput-
ing (NUC) Kit (cf. Figure 5) 2. However, any node that has the aforementioned characteristics such
as supporting Intel SGX [5] can be used. Figure 6 illustrates a high-level overview of a TINC/Piccolo
node implemented based on the Figure 11 in Piccolo D2.1 [1].

Figure 5: Intel NUC as a Piccolo Node enabler

Piccolo functions used in TINC are realized as Docker containers with the additional ability to provide
computations in Trusted Execution Environments (TEEs) [4] such as Intel SGX [5]. The added value
of such a property is that each function can run inside an enclave and be isolated from any other

1On this section the terms TINC-engine and Piccolo agent will be used interchangeably.
2The models that will be used are: NUC7PJYH and NUC7I3DNKE

CO PICCOLO consortium 2021 Page 14 of (43)

PICCOLO Deliverable D2.2

Figure 6: TINC as a Piccolo Node. Adapted from D2.1 [1]

function running on the same Docker container, on another container executed at the same time, or any
privileged software running in the host OS. Such a feature, along with a virtualization environment
like Docker, enables support for multi-tenancy since the function execution and communication is
isolated from other tenant operations (cf. Figure 6, presented with a shielded lock icon). Besides
the multi-tenancy feature, the isolation also protects against interference of sensitive operations. To
provide seamless support between Docker containers and the Intel SGX technology, we leverage from
the Secure Container (SCONE) Framework [6] in order to protect computations taking place inside
containers and additionally offer attestation procedures to verify the freshness and correctness of the
code that will run on the platform.

In the TINC platform, a Piccolo function is a containerized confidential function that has been gener-
ated using a utility called TINCmate. This utility converts a native application to a (secure) Piccolo
function and ultimately generates a Docker image that is ready to be loaded on a TINC/Piccolo Node.
A converted Piccolo function implements (but not mandatory) its own HTTP server in order to be
reachable from external parties that want to trigger actions related to the function.

As the concept supports theoretically any type of containerized function, the current implementation
of the secure/isolated execution supports currently programming languages such as Python, Nodejs,
Golang, C/C++ and frameworks such as Tensorflow [7] and Openvino [8]. The secure variants in
the Behavioral Risk Monitoring prototype3 are provisioned by Fluentic and ready to be deployed as
Piccolo function on TINC.

3A secure variant is a native application that has been re-compiled (or linked against a particular linker provided by SCONE)
using a set of cross-compilers and is able to be executed inside an Intel SGX enclave or an interpreter that runs inside
an enclave

CO PICCOLO consortium 2021 Page 15 of (43)

PICCOLO Deliverable D2.2

A Manifest describes a function description (before its execution), serves as the entry point for the
function deployment/management logic and is used to plan resource allocation and function/data
orchestration4. It contains properties like execution arguments, environment-related variables and also
TEE specific requirements. Moreover, it can describe a set of functions and their properties, grouped
together to define a compute workload. The introduction of such Manifests in TINC further supports
the identification of the most suitable node for execution by the TINC/Piccolo agent and enables
the definition of access control and access operation rules between functions. A TINC Manifest
is provided in the form of a JavaScript Object Notation (JSON) file. Listing 1 gives an example
for a IoTea talent function. The structure begins with the definition of a workload that is used to
group functions together (under one namespace). Then each function’s properties or requirements
(e.g. process as a secure container) are defined in order to be interpreted by a TINC/Piccolo node.
Functions which are not of the same compute workload definition are isolated from each other, not
able to share any data between each other.� �

1 {

"api_version":"v0.0.3"

3 "workload": {

"workloadID": "3dec562b18a9050f0b5fbe0036cd7c9a9a3c3ebf59d3e5f323fd0995d

7a79738",

5 "name": "w1",

"version": "v0.0.1",

7 "description": "A basic python IoTea talent",

"namespace": "piccolo-slice-1",

9 "network": "iotea-platform-network",

"functions": [

11 {

"functionID": "c91b4b74bf784a319bd046bf161edb1a",

13 "name": "f1-iotea-talent",

"kind": "secure:docker:container",

15 "version": "v0.0.1",

"compression": "tar.gz",

17 "programming_language": "Python",

"size": "390334976",

19 "remote_reference": {

"download_endpoints": [

21 "https://tincmate.net:8080/api/v1/function/download/c91b4b74

bf784a319bd046bf161edb1a/f1-iotea-talent.tar.gz"

]

23 },

"processing": {

25 "secure_compute": {

"mode": "hw",

27 "metadata": {

"session_id": "piccolo-slice-1/f1-iotea-talent_a4a0b

3",

29 "mr_enclave": "3430b3c0ab0e8a24ea4481e6022704cdbbcff

68f6457eb0cddaecfd734fed241",

"class_size": "L"

4More details about resource allocation in TINC is described in Piccolo D3.2 [9]

CO PICCOLO consortium 2021 Page 16 of (43)

PICCOLO Deliverable D2.2

31 }

}

33 },

"restart_on_error": true,

35 }

]

37 }

}� �
Listing 1: Example function deployment in TINC/Piccolo Node

The TINC node implements the basic operations defined by the Piccolo API (cf. Piccolo D2.1 [1])
including the discovery of other Piccolo nodes, the execution of Piccolo functions to remote nodes,
the startup of functions in the execution environment and the query of function identifiers in the
network. In more detail, the TINC/Piccolo node uses rendezvous points and Distributed Hash Tables
(DHTs) for discovering other nodes while for obtaining information from compute nodes such as
hosted functions or utilized resources, a publish/subscribe communication model is used. This loosely
coupled model allows a Piccolo agent to operate in a location-independent as nodes are concerned
about the data in the network and do not want to maintain locations of node to request for such
information.

The TINC/Piccolo node utilizes Docker as the underlying layer to start/stop/remove/query functions
in the form of (secure) Docker containers. Specifically, the runtime provides a watchdog called "Ob-
server" that runs alongside each function5 and aids its interactions not only with external entities but
also with other functions. Additionally, the watchdog monitors the resource consumption and live-
ness of the function and reports it to the Piccolo Agent. The aforementioned description refers to the
implementation of the EE/Runtime-function API. The described operations relate to functions that
are already located in a TINC/Piccolo node. However, when that is not the case, the node leverages
from the manifest files and the topic-based messaging patterns to identify and fetch functions from
other nearby nodes, ultimately providing an implementation of the Runtime-Network API.

While the information exchange between nodes are more extensively implemented in the current node
prototype, the interactions between functions (Function-network API) are limited in the sense that
a function can communicate with another function only using their custom protocol or by leveraging
an HTTP API provided by the watchdog that forwards requests to the relevant function without the
requestor knowing the actual location of the target function but only using a function identifier pro-
vided by the watchdog. However, since this type of node allows also the execution of secure functions
the communication is limited under functions that belong on the same workload and that run inside
SGX enclaves. The policies for the interactions between functions are provided by a combination of
two description documents. The first one is the manifest that presents which functions belong under
the same workload (ultimately belong to the same tenant). The second one is a session policy that is
generated from TINCmate and implements SCONE’s specification in order to define the basic rules
of communication between two functions in terms of enclave interaction. The latter is described more
in Section 5.2. Due to session policies and manifests the data sharing between functions (Runtime-

5Note that in case of a secure function a secure watchdog is used that runs inside an Intel SGX enclave.

CO PICCOLO consortium 2021 Page 17 of (43)

PICCOLO Deliverable D2.2

function-function API) is more controlled and governed through strict policies in case of sensitive
functions (Function protocols).

Since this type of Piccolo node was derived from the TINC system certain APIs like the Agent-
Runtime, Agent-Execution environment, Execution environment to Execution Environment in-
stance (plus runtime) and Agent-environment are implemented by internal components of TINC.
These components maintain a list of active/stopped functions and can at any time configure new slots
for incoming ones6 by contacting the docker daemon (i.e. bootstrapping a new container), increase
the number of replicas, register a stored function for discovery through the publish/subscribe mes-
saging system and finally remove unused functions. Removing functions is a combined mechanism
based on predefined rules (setup by the node owner in a configuration file) and consumption metrics
provided by the function watchdog.

As already highlighted this type of node provides support for sensitive computations, like functions
operating on human traits and personal data (Behavioural Risk Monitoring PoC), through the uti-
lization of SCONE, Intel SGX, Docker. The interface for accessing secure hardware like Intel SGX
(Agent/node management - secure hardware) is implemented by SCONE and its basic operations
have been consumed and simplified by TINC utilities (e.g. TINCmate). This combination allows not
only to protect data at use, in transit and at rest but also to maintain a continuous data processing
pipeline as described in the next section.

3.1.2 Integration with the Behavioural Risk PoC

Since the Behavioural Risk PoC requires access to personal data such as a person’s facial expressions,
body movements and sensitive vehicle metadata there is an inherent need for protecting this data along
with the application code that is provided by the application/service providers like Sensing Feeling
and Bosch. For instance, as it was presented in Figure 6 Bosch uses IoTea Talents (cf. Piccolo
D1.2 [1]) as functions to be executed on top of a TINC/Piccolo node in a secure manner. Talents are
based on a simplified programming actor-based model to describe the processing rules. In order to
be executed in a secure fashion, IoTea Talents need to be converted to a secure variant of a Piccolo
function. In Figure 7, we present the lifecycle of a Talent deployment in TINC/Piccolo Agent by
utilizing TINC’s utilities (TINCmate).

The capability to convert a native talent into a secure TINC/Piccolo function is called TINCmate
and is a web service that provides a Representational State Transfer (REST) API along with a User
Interface (UI). Note that all the operations until the talent is deployed into a TINC/Piccolo node take
place into the TINCmate service.

The first step for the deployment on a TINC/Piccolo Node is to compress a talent7. Secondly, we use
an operation called "Tincify"8 that relieves the developer from configuring/converting the application

6The resource allocation is a more complex operation that is described in D3.2 [9].
7Compression formats supported are tar or gzip.
8Tincify: This procedure is based on SCONE’s "sconify" [10] mechanism that generates a confidential docker image from

CO PICCOLO consortium 2021 Page 18 of (43)

PICCOLO Deliverable D2.2

Figure 7: State machine diagram presenting the lifecycle of a talent’s deployment on a TINC/Piccolo
Node

into a secure TINC/Piccolo function. This mechanism receives as input compressed applications
developed either in Python or Nodejs along with any required files or libraries needed for the execution
of the application. The application will be containerized (added to a Docker Image as a layer) by using
a specific template provided by Fluentic. This template includes a component called "Observer" that
acts as a watchdog for the application/function and special purposed compilers and utilities from
SCONE that enable the interaction with the Intel SGX driver in order to seamlessly convert it to a
secure variant and make it compatible to run in a secure enclave 9.

The procedure handles sensitive files by encrypting them into secure regions. The procedure involves
the creation of an index file that points to the structured file-system of the application. The final
encryption keys are considered "secrets" and need to remain hidden from unauthorized entities. The
procedure leverages from an external entity that offers attestation and session management operations
(see details in Section 4.2). Once the session has been generated the "Tincify" procedure finishes
by storing the produced docker image to the disk and makes it available through a REST API for

a native one but with the addition of a watchdog component and extra configurations by Fluentic Networks.
9enclave: private predefined areas in memory that shield code and data during computation

CO PICCOLO consortium 2021 Page 19 of (43)

PICCOLO Deliverable D2.2

download upon request.

For the deployment state a manifest needs to be generated and a designated Piccolo Node chosen.
Once the manifest is received by a TINC/Piccolo node and the function placement procedure takes
place then the talent is considered deployed. To complete the lifecycle, a talent can be removed when
it is considered unused (i.e. no requests received or is inactive) or on demand by the application
provider. The same lifecycle also applies to the deployment of a Visual Processing Engine (VPE)
which is the other data processing pipeline considered in this PoC.

3.2 Smart Factory

For the Smart Factory use case there is no PoC implementation of a Piccolo node yet. Instead efforts
are focused on a simulator application which allows the participants to follow a top down approach
to understand the overall system and related problems better. This simulator is described in D1.2 [3].
Hence the following description of a PoC node is of theoretical nature.

3.2.1 Node design

The Smart Factory use case promotes the idea of injecting and processing distributed applications
based on IEC 61499 [11] into complex network topologies which control conveyor belt installations
involving sensors and actuators. The value of this approach stems from far shorter (re-)configuration
periods after a conveyor belt setup is changed and also an optimized control of the overall work piece
flow. Hence the Smart Factory vision of a Piccolo node derives from:

• Optimal placement of IEC 61499 function blocks (Piccolo functions) within a network
topology

• Optimal Control of work piece flow leveraged by a digital twin of the conveyor belt net-
work

Both points require the exchange of information between nodes of the network topology which is dealt
with in D3.2 [9]. However, the Piccolo node itself needs to maintain an information database which
stores exchanged information. Further the information needs to be accessible to the optimization
layers and in particular by the digital twin. It is likely that every node needs to be capable of topology-
wide optimization for function placement since IEC 61499 applications can be injected on any node.

From this perspective the role of the Piccolo Agent within a node gets more precise:

• Maintain an information database through means of communication with other agents

• Enforce placement of IEC 61499 function blocks (Piccolo functions) as requested by optimiza-
tion layers

CO PICCOLO consortium 2021 Page 20 of (43)

PICCOLO Deliverable D2.2

Figure 8: Piccolo Agent, Information Base and Optimization Layer

• Enforce workpiece flow as requested by optimization layers and digital twin

It is still not clear how much the optimization of workpiece flow will be part of the Piccolo Agent
versus the inter-agent communication. It might be desirable to disconnect function placement and
workpiece flow entirely since workpieces are part of a higher abstraction layer.

As explained in D2.1 [1] the Piccolo node will run on an industrial version of GRiSP2 hardware
platform (see Figure 9). The software platform is a unikernel consisting of the Erlang BEAM D2.1 [1,
Section 2.6], OTP D2.1 [1, Section 3.3] and RTEMS [12].

Figure 9: GRiSP2 standard board (industrial version not manufactured yet)

Compared to node architectures described in D2.1 [1, Section 5.1] the Smart Factory use case will
probably be the simplest manifestation. There is just one execution environment instance for Erlang

CO PICCOLO consortium 2021 Page 21 of (43)

PICCOLO Deliverable D2.2

Figure 10: Smart Factory Node Architecture, Agent is also processed as Actor

actors on a single host, and within this architecture the Piccolo Agent is treated as any other Piccolo
function – also as an actor. The use case is dealing with a closed system, hence software security
currently can be neglected.

Since function placement is such a crucial part of the use case the question of distribution of Erlang
BEAM executable byte code arises. OTP provides a server entity [13] which can be used to store
and extract executable byte code. Distribution of byte code can simply be done by targeted Remote
Procedure Calls (RPCs) or in a broadcast fashion to update all nodes in a topology at the same time.
For a start it appears simpler keep all byte code updated on every node, e.g. every node has the
same set of byte code fragments all the time. The byte code consists of Erlang modules representing
function blocks of the topology given through IEC 61499. A Piccolo Agent and optimization layers
can reconstruct that topology through meta information in every module to ensure communication
between function blocks.

3.2.2 API considerations

The potential usage of APIs as described in D2.1 [1, Section 5.3] does not take a clear shape at the
moment. Function placement will likely be optimized according to placement of sensors and actors.
Hence (referring to Figure 3 API11 (node management interface to special hardware) will play a
dedicated role while API10 (interface to secure hardware) will be completely neglected. Since there
is just one execution environment instance API 3 and 4 (EE management) are irrelevant. All other
APIs are important in the scope of function migration and discoverability within a network topology,
and also establishing connections between functions as described through IEC 61499.

CO PICCOLO consortium 2021 Page 22 of (43)

PICCOLO Deliverable D2.2

Several existing components of Erlang/OTP can be interpreted as implementation of the abstract APIs
described in D2.1 [1, Section 5.3]:

• API1 (Agent-Runtime) and API2 (Agent-Execution environment) map to Erlang/OTP supervi-
sion tree, process registry and high level abstractions for server and event handlers – all of which
are just actors reacting to messages. Note that Erlang applications are always organized in a
process supervision tree where parent nodes are responsible for the lifecycle of their children.

• API5 (Runtime-Network) and API6 (Function-Network) map to the Erlang/OTP process reg-
istry and its native TCP based framework for discovering and accessing other Erlang nodes via
messages. The Erlang code server is responsible for distributing byte code.

• API7 (EE/Runtime-function) maps to the lifecycle management capabilities of Erlang/OTP su-
pervisor trees which include means to start and stop functions as well as failover strategies. It
is also possible to hibernate functions to reduce memory footprints.

• API10 (Agent/node management-secure hardware) maps to the GRiSP2 API for its secure ele-
ment, a hardware device that stores secrets and certificates, and is able to perform cryptographic
operations on them. It is however not clear yet if and where it will be used in the use case.

All the above Erlang/OTP components are by default included into every Erlang application and they
provide plugin mechanisms (in an inversion-of-control sense) to make use of them. In the upcoming
process of developing the Piccolo node it will likely happen that abstractions will be found which are
closer to the Piccolo API descriptions, moving away from the standard Erlang/OTP APIs but under
the hood still using them.

IEC61499 function blocks and their state machines are compiled into Erlang modules as illustrated
by the code snippet in Appendix A.2. Those modules contain callbacks for state changes which are
’hooked’ into an Erlang actor on startup which again represents a small runtime for this particular
function block. Since state changes can be manifold the callbacks can be very different between
compiled function blocks. However, the API for starting the actual Erlang actor is very simple: there’s
a start function which takes the compiled IEC61499 Erlang module as argument and a corresponding
stop function.

3.3 Piccolo docker node with hardware acceleration features

This section outlines the capability of a Piccolo node that has specialised hardware for dedicated
tasks beyond data- or packet processing, specifically Time-Sensitive Networking. The corresponding
PoC highlights the integration of a TSN sub-network with Industry 4.0 (I4.0) specific communication
into the Piccolo ecosystem, built on hardware accelerated platforms, namely InnoRoute’s research
platform TrustNode and RealTimePI, shown in Figure 11 and Figure 12.

CO PICCOLO consortium 2021 Page 23 of (43)

PICCOLO Deliverable D2.2

Figure 11: TrustNode TSN router as enabler device for the TSN OPCUA PoC

Figure 12: RealTimePI TSN endpoint as enabler device for the TSN OPCUA PoC

3.3.1 Basic Docker node

This describes the implementation of a basic docker engine software package on a node which exposes
the real-time networking capabilities of the underlying hardware. Figure 13 shows a block diagram of
a Piccolo docker node with access to specialised hardware. According to the definitions from D1.2 [1]
the Piccolo agent becomes the control instance of the TSN node and the special hardware is the Time
Aware Shaper (TAS), the entity which generates the reserved time slots for packets.

The Execution Environment entity is here specified as a docker engine. The Piccolo agent requests
the API to run new instances of Piccolo applications on top of this EE. The runtime component is
provided by the docker-compose toolchain. In this PoC the Piccolo agent also provides information
about the specialised available resources of the Piccolo TSN node, which in this case are the TSN
capabilities of the TrustNode or RealTimePI.

3.3.1.1 Piccolo agent on docker node mÃ¶p

The Piccolo agent implementation enables it to deploy a new docker environment on the node. The
node design strives for simplicity with enough flexibility to target further use-cases and extensions.
This ensures the implemented API could merged with other Piccolo node API implementations later.
The agent API is extended according to D1.2 [1] with functions to mange the Piccolo applications
running inside this new docker environment. This includes functions to CREATE, DELETE and LIST
new/running environments. If a new Piccolo application is instantiated, the required resources need to

CO PICCOLO consortium 2021 Page 24 of (43)

PICCOLO Deliverable D2.2

Figure 13: Basic docker node block diagram (with PoC specific instances loaded)

match the provided resources of the selected EE. Listing 2 shows an example instantiating request for
this dedicated node type. The provided metrics ..."type":"TAS","devicetype":"trustnode",... match to
the provided capabilities of the Piccolo docker node running on the TrustNode device. The remaining
definitions in Listing 2 will ensure the instantiation of the PoC-specific innoroute/rest2OPCUA con-
tainer with hardware access to the Memory Mapped Interface (MMI) of the TrustNode to control the
settings of the Time Aware Shaper. Additionally, the northbound interface type rest2OPCUA is ad-
vertised by the Piccolo agent. This enables external calls of the new function provided by this Piccolo
node. The Piccolo API needs to provide information about running instances of Piccolo functions on
the environment.� �

1 {"piccolo-object": {
"type":"docker",

3 "resources_required":{
"accelerator":{"name":"TrustNode_TAS",

5 "type":"TAS","devicetype":"trustnode",
"interface":"mmi"}},

7 "name":"",
"interface":[{"type":"rest","subtype":"rest2OPCUA",

9 "TSN":{"max_latency_ns":5000, "bandwidth_kbs":20}
}],

11 "config":"version: ’2’\nservices:\n test:\n\
image: innoroute/rest2opcua:latest\n\

13 ports:\n - ’56:5000’\n"
}}� �

Listing 2: Example of Piccolo Docker TSN node instantiation

CO PICCOLO consortium 2021 Page 25 of (43)

PICCOLO Deliverable D2.2

In Appendix A.1, Listing 4 shows the state of the docker_env_1 docker environment for a Piccolo
node that is running one container named Piccolo2OPCUA_1. Due to the special requirements of the
Piccolo function (TrustNode_TAS) the resources need also be present in the root of the Piccolo agent,
otherwise the Piccolo function could not have been accepted for instantiation. The Piccolo API also
provides information about the northbound interface of the running function, in this case this is an
rest2OPCUA interface. The API provides the information required to communicate with this interface
type. The agent itself is not involved in the data-plane communication. If another Piccolo function is
able to deal with the interface type rest2OPCUA, just the network port parameter is needed to open a
connection.

The specifics of the OPC Unified Architecture (OPCUA) interface are not part of the Piccolo environ-
ment. Additionally, the interface definition contains the TSN definition which is used to configure the
special timing requirements of a connection.10 For the docker environment, the Piccolo agent needs
to manage all requests of external network ports for new instantiated Piccolo functions. As shown in
Listing 2 the requested external port for the interface was 56, the Piccolo agent has mapped this port
automatically to the next free port in its available port range (5001).

3.3.1.2 Implementation details mÃ¶p

Figure 14 shows the implementation details of the Piccolo docker node. The basic virtualisation

Figure 14: Block diagram of basic docker node’s components

functions are provided by the docker engine itself. The toolchain of docker-compose is used to en-
capsulate the comprehensive docker functions into compact description files. The Piccolo agent is
implemented in Python, which enables an easy adaption and extension with further features. The
Python module includes the node’s REST API, which was designed with support of OpenAPI tools.

10see D1.2 [3] for details.

CO PICCOLO consortium 2021 Page 26 of (43)

PICCOLO Deliverable D2.2

With the described generic interface the Piccolo docker node environment is able to run generic
Piccolo functions and manage their dedicated northbound interfaces to enable inter application com-
munication.

3.4 𝜇Actor

𝜇Actor [14] is a serverless compute platform developed at Technical University of Munich that is
available as open-source software11. Instead of the stateless functions used by state-of-the-art server-
less systems, it uses actors as its unit of computation [14], which, as described in D3.1 [15], maintain
local state and exclusively communicate using messaging. The platform aims to extend the concept
of serverless computing from the cloud/edge-centric state-of-the-art towards the far edge and targets
long-lasting applications spanning a heterogeneous set of devices [14].

The platform is generic, adheres to many of the concepts discussed in D2.1 [1], and could be used to
implement many of the proof-of-concept applications discussed in D1.1 [2]. 𝜇Actor’s use has been
demonstrated in a basic smart office scenario [14].

Figure 15: 𝜇Actor as a Piccolo Node. Adapted from D2.1 [1].

𝜇Actor is a serverless platform and uses actors specified in a high-level language or a portable byte-
code format, which are dynamically received from the network and executed using a language runtime
that is provided by the system [14]. Similar to Cloudflare workers [16], 𝜇Actor achieves the isolation
required for multi-tenancy operation by sandboxing the actors using one or more language virtual ma-
chines [14], which correspond to the execution environments presented in D2.1 [1]. Figure 15 shows

11https://github.com/uActor/uActor

CO PICCOLO consortium 2021 Page 27 of (43)

https://github.com/uActor/uActor

PICCOLO Deliverable D2.2

a high-level overview of a 𝜇Actor node that was derived from Figure 11 in D2.1 [1]. The execution
environments and their corresponding runtimes are shown as the red boxes in the top-left of the figure
and the serverless actors are shown as orange boxes.

The initial prototype uses a single execution environment for actors defined using Lua [14]. As
shown in the figure, one could add additional execution environments, e.g., for actors defined using
WebAssembly (WASM). It would be possible to dynamically create additional instances of a type of
execution environment, e.g., the Lua execution environment, and implement an API corresponding
to the Execution environment to Execution Environment instance (plus runtime) API. Further-
more, one could extend the system to manage the resource distribution between multiple execution
environments and implement the Agent-Node management API.

The execution of the actors, which correspond to the Piccolo functions, is only driven by incoming
messages, which allows the runtime to exercise precise control over their execution and multiplex
many actors onto a single system thread [14]. Furthermore, the dynamically received actors only have
a very limited set of functionality [14]. While the initial prototype requires the actors to cooperatively
exit after processing each message with a limited set of instructions, the publication [14] discusses
various ways to allow for blocking and long-running actors. This is required to achieve the security
goals or the preemption of a function to be able to run a higher-priority function that are discussed in
D2.1 [1]. This approach to scheduling can be interpreted as an implementation of the EE/Runtime-
function API.

The actors communicate using content-based networking [17, 18], which routes messages based on
their content. Similar to existing systems [18], 𝜇Actor uses messages consisting of typed key-value
pairs and subscriptions consisting of constraints on these fields [14]. This allows for simplified exten-
sion — extensions can add subscriptions without requiring a change to the publisher — and decoupled
(location-independent) communication [14]. The actors (runtimes) publish a set of (default) subscrip-
tions, which are used across the network to route messages towards interested actors [14]. This can
be interpreted as an implementation of the Function-Network and Runtime-Network APIs. 𝜇Actor
uses a node-local message bus that routes the message between local actors and the remote forwarders,
which are platform actors (defined below) that can be implemented using multiple underlying com-
munication protocols and forward the messages between multiple nodes [14]. Those platform actors
implement a dissemination strategy deciding which messages and subscriptions are forwarded across
node boundaries [14]. The networking components are shown in grey in Figure 15. Messaging is the
only way for actors to interact, both on a local node as well as across multiple nodes. Therefore, the
content-based messaging covers both the Runtime-function-function API as well as the Function
Protocols.

The same actors can be deployed to a variety of devices, both powerful Linux nodes supported
by other serverless platforms as well as small, resource-constrained microcontrollers such as the
ESP32 [14]. In the context of Piccolo, the 𝜇Actor runtime could also be nested inside an execu-
tion environment for Containers or Virtual Machines (VMs).

Special node and hardware functionality is integrated into the system using platform actors that are

CO PICCOLO consortium 2021 Page 28 of (43)

PICCOLO Deliverable D2.2

implemented as part of runtime but interact via messaging [14]. Therefore, the system resources are
available as actors in a platform-independent way. As shown on the right side of Figure 15, these
Platform actors can be used to integrate, e.g., sensors, external communication protocols such as
HTTP, or any other functionality beyond basic, isolated computation and messaging [14]. As they
are statically included as part of the platform and have exclusive access to the system resources,
there is no requirement for an Agent/Node Management - special Hardware API, and the Agent-
Node management API would be limited to managing general-purpose hardware. In summary, the
platform is highly suitable for multi-platform operation.

In addition to the fine-grained scheduling discussed above, the serverless approach also provides the
node with many capabilities related to the automatic management of resources and failures discussed
in D2.1 [1]. As the actors are only active while processing a message, only have a very narrow
interface, and each actor’s state is transparent to the execution environment, the execution environ-
ment gains flexibility in managing the actor’s lifetime and storage [14]. This allows controlling their
resource footprint using hibernation and allows for the migration of actors [14]. Furthermore, this
provides the execution environment with precise information of an actor’s resource consumption and
allows to assess the capacity of a node in a fine-grained way. As the platform actors only react to
messages, they can ensure safe access to special hardware resources.

Actors are able to spawn and manage other actors, which allows them to be used to implement an
orchestration system [14]. The agent functionality can, therefore, be implemented as a set of actors
interacting using (content-based) messaging. Figure 15 shows the Piccolo agent as a platform actor —
large parts of the agent functionality may, however, also be implemented as an actor executed using
one of the execution environments. Most of the management APIs defined in D2.1 [1] can therefore
be implemented by letting the system components, e.g., the actors and the execution environment,
emit and listen to events. Hence, e.g., the Agent-Runtime, Agent-Execution environment, Agent-
environment, and Execution environment to Execution Environment instance (plus runtime)
APIs as well as the Agent Protocol and Runtime Protocols can be implemented using actors and
messaging. The agents on multiple nodes can communicate with their peers on other nodes using the
same messaging mechanism. Hence, there is no need for a separate Control Plane.

As an example, the initial prototype contains a deployment system that is implemented using actors
and allows to deploy actors to nodes as soft-state [19]. Listing 3 shows a JSON representation of
an example deployment message (reduced to the fields relevant to the deployment system) published
to the network and received by the deployment manager on the nodes. The deployment manager
is implemented as an actor. The deployment is specified using a type field, a name, and a lifetime
(lines 2–4). Furthermore, the message contains information such as the name, version, and the type
of required execution environment and (optionally) the code of the actor (lines 6–9). Finally, the set
of nodes the deployment (actor) should run on can be limited by requiring a set of actors running
on the node and a set of labels attached to the node (lines 11–13). The latter are included as op-
tional constraints in the deployment subscription and are therefore used to limit the spread of the
deployments throughout the network. Internally, the management actor maintains information about
the deployments, starts and stops the actors by sending messages to the execution environments, and
receives updates about their status as messages published by the actors and execution environments.

CO PICCOLO consortium 2021 Page 29 of (43)

PICCOLO Deliverable D2.2

� �
{

2 ’type’: ’deployment ’,
’deployment_name ’: ’de.tum.ping_pong.deployment.ping’,

4 ’deployment_ttl ’: 60000,

6 ’deployment_actor_type ’: ’de.tum.ping_pong.actor.ping’,
’deployment_actor_runtime_type ’: ’lua’,

8 ’deployment_actor_version ’: ’1.0’,
’deployment_actor_code ’: ’function receive(publication)...’,

10
’deployment_required_actors ’: ’com.example.actor’,

12 ’deployment_constraints ’: ’foo’,
’foo’: ’bar’,

14
// ...

16 }� �
Listing 3: Example 𝜇Actor deployment message

This orchestration system is further discussed in [19].

Generic protocols that support the integration of multiple Piccolo node-types could be implemented
using platform actors, e.g., one that converts HTTP requests into messages that are then processed by
an actor as it is shown in Figure 15. Similarly, external runtimes such as a Docker daemon could be
exposed to the actors using platform actors and, therefore, enable the management of other types of
Piccolo functions using dynamically deployed actors.

CO PICCOLO consortium 2021 Page 30 of (43)

PICCOLO Deliverable D2.2

4 PoC Isolation and Security discussion

Providing robust isolation between applications running on the same Piccolo node is a key require-
ment previously described in D2.1 [1]. This is essential from a security point-of-view where the
prospect of accidental or deliberate leaking of information from one application to another could ren-
der the platform untenable. Applications from different users (or the same user) also compete for
the resources of the Piccolo node (for example: CPU cycles, memory, network) and the allocation of
these resources must also be robustly enforced.

4.1 Lightweight Virtualization

We are exploring the use of using Kata Containers, a lightweight virtualisation technology which pro-
vides a stronger degree of isolation for Linux containers. Kata Containers use hardware-virtualization
to run a dedicated kernel for each container or pod (a set of containers) providing isolation of net-
work, I/O and memory and can utilize hardware-enforced isolation. The kernel that is executed for
each container is not the same as the host-kernel and a simpler root file system is provided [20].
Figure 16 shows how traditional containers compare with Kata Containers [21].

Kata Containers supports a number of different hypervisor backends including QEMU/KVM, Amazon
Web Services (AWS) Firecracker [22] and cloud-hypervisor [23].

Figure 16: Comparison of native containers vs Kata Containers

Using Kata Containers extends the isolation provided in the case where a Piccolo application is de-
ployed as a container using a container runtime, such as docker or containerd, as the EE. Each
Piccolo application deployed using Kata Containers is isolated within a separate Lightweight Virtual
Machine (LWVM) as shown in Figure 17.

CO PICCOLO consortium 2021 Page 31 of (43)

PICCOLO Deliverable D2.2

Figure 17: Using Kata Containers as an Execution Environment

Figure 18 shows an alternative scenario that isolates each instance of an EE on the Piccolo node by
deploying each EE within a container inside a separate LWVM. This makes it possible to use multiple
instances of an EE that does not natively support multi-tenancy.

Figure 18: Using Kata Containers as system component to deploy Execution Environments

4.1.1 Results

Our initial experiments used Kata Containers v1.12 with docker on a number of different Arm-based
platforms and we obtained preliminary results comparing network latency and bandwidth for contain-

CO PICCOLO consortium 2021 Page 32 of (43)

PICCOLO Deliverable D2.2

ers deployed using runc and Kata Containers using QEMU/KVM. The configuration of Kata Contain-
ers was not optimized (we used the out-of-the-box defaults as far as possible). The early results across
the different hardware platforms showed a network latency increase between 36 % and 147 % and an
up to 63 % reduction in maximum sustained bandwidth when using Kata Containers.

4.1.2 Further work

Kata Containers v1 is now deprecated and Kata Containers v2 is now the supported version. Kata
Containers v2 includes changes that have made it necessary to alter aspects of our experimental setup.
Kata Containers v2 works only with container runtimes that use v2 of the runtime shim API and there-
fore does not work with docker (which only supports v1 of the runtime shim API). Kata Containers
v2 includes containerd-shim-kata-v2 which enables us to use containerd in-lieu of docker.

We intend to repeat the network latency and bandwidth experiments using Kata Containers v2 along
with measuring other properties such as memory usage and filesystem performance. We will also use
firecracker as an alternative hypervisor for Kata Containers. We will include this new configuration
in our benchmarking.

4.2 Behavioural Risk Monitoring Proof of Concept - Security Concepts

The TINC/Piccolo Node provides operations and technologies to protect data and code at rest, in
transit and in use. While shielding data at rest and in transit involves the adoption of encryption
mechanisms in order to achieve confidentiality and integrity of data, securing data in use (i.e. when
code and data are loaded in memory unencrypted) is even more challenging. The TINC/Piccolo
node leverages from Trusted Execution Environments (TEEs) [4] and in particular from the Intel
SGX [5] technology combined with the SCONE framework [6]. This framework offers a set of
utilities and operations that not only simplify the interactions with the hardware (Intel SGX driver) but
also generate confidential applications without complex configurations. In addition, to protect against
vulnerabilities such as deprecated firmware, software or hardware components the system leverages
from an important aspect of confidential computing, called attestation. This operation ensures the
confidentiality and integrity of the function. Components like the CPU, its firmware and the function’s
code and data itself are being attested prior to execution. SCONE provides a seamless attestation
mechanism that is integrated to the TINC/Piccolo node in order to be transparently performed at each
function startup.

The Behavioural Risk Monitoring PoC involves pipelines with multiple stakeholders such as the ser-
vice provider (Bosch or Sensing Feeling), the infrastructure provider (Fluentic), and the end-users
(e.g. car drivers). From the end-user’s viewpoint, securing any private data from leaking to unautho-
rized entities is essential. On the other hand, the service providers require that their business logic
remains protected (i.e. no other entity can manipulate their data and code, even the infrastructure
provider) and act as trustworthily as possible towards their users. Therefore, it is crucial to utilize

CO PICCOLO consortium 2021 Page 33 of (43)

PICCOLO Deliverable D2.2

protection mechanisms that isolate critical procedures during computation and ensure data and appli-
cation code safety for multiple stakeholders. Although we have already described in Section 3.1.2 the
operation called Tincify that converts a native compressed function into a trusted containerized func-
tion, in this section we focus more on the aspects of attestation, the generation of session policies,
management of function secrets, such as encryption keys, certificates and configuration parameters,
and the actual execution of the function in a TEE.

Attestation and Configuration Procedures

There are cases where enclaves need to collaborate with other enclaves on the same platform due to
data exchange in case of limited enclave space to retain all the information or with Intel’s reserved
enclaves to request Intel related operations. Therefore, it is crucial to accomplish trust between the
two enclaves. On the other hand, there are times that a client needs to prove (mainly to a server of
the application provider or vendor) that the function is running on a trusted platform that can operate
on secrets securely. Both the aforementioned conditions require a proof of a TEE and the process of
claiming that is defined as attestation, which is divided into two types:

• Local Attestation: a successful result of a local attestation yields an authenticated affirmation
between two enclaves running on the same platform that trust has been established and that they
can transfer exchange data securely.

• Remote Attestation: the same operation as the local attestation but now a client needs to
provide this kind of verification to a server so that the latter can provide the former with the
secrets it requested in an assured manner. In more detail, a remote party compares the enclave
measurement12 [24] reported by the trusted platform with an expected measurement, and only
proceeds if the two values are equal.

The TINC/Piccolo node leverages from two services that are executed inside enclaves and implement
the local and remote attestation procedures without the need for source code changes on functions.
The pipeline of the PoC assumes that the remote attestation service13 is trusted 14 and can be located
at the infrastructure provider’s site or even the application provider’s domain. The local attestation
service resides inside an enclave and performs the operations needed for the function’s enclave to
accomplish attestation and secrets acquisition upon bootstrapping.

Session Policies: On its own, the attestation procedure does not offer flexibility and control over op-
erations that a function may require like acquisition of encryption keys. Therefore, a TINC/Piccolo
node utilizes a scheme of a session policies provided by SCONE. A session policy is a subset of
YAML15 and is defined in a TINC/Piccolo node for each function to cater for each function’s secrets

12An enclave measurement can contain code, data, heap, stack, location of each page within the enclave and security flags
employed.

13There can be multiple attestation services but then it needs to be defined which one should be used each time. Therefore
this expansion is not covered in the current PoC.

14If the remote attestation service resides on an untrusted server, then the application owner should perform a remote
attestation of that service before transmitting encryption keys and certificates to it.

15https://yaml.org/

CO PICCOLO consortium 2021 Page 34 of (43)

https://yaml.org/

PICCOLO Deliverable D2.2

and measurement values. Additionally, this policy can define which functions are allowed to commu-
nicate by providing their session identifiers. The session policy is taken care by the TINCmate utility
and abstracts all the operations offered by SCONE’s utilities.

Function Secrets: The session policy can also maintain a function’s secrets (like encryption keys)
that are transferred through Transport Level Security (TLS) towards the Remote Attestation Service.
Secrets are uniquely defined by a name (in a key-value manner) and can be either provided to the
policy by the function developer or generated by the attestation service, which reduces risks of secrets
being revealed to humans. Those secrets are only allowed to be loaded to a function upon request and
after it has a valid function measurement value that identifies that the function is able to run on the
designated trusted platform.

Secure Function Execution: The execution of the function (e.g. IoTea Talent) is done through
the bootstrapping procedure of a docker container. The container will initiate first the "Observer"
module and then the actual function. Both of these modules run inside enclaves and in order to be
executed they need to be attested by a remote party and upon success receive all the secrets needed.
Otherwise any encrypted information cannot be decrypted inside the secure execution environment.
Moreover, the two modules, "Observer" and the function, can communicate with each other without
the "Observer" module being able to intercept sensitive data destined for the actual function 16.

The above features are depicted in Figure 19 that presents an example of converting a native appli-
cation into a TINC/Piccolo function along with attestation procedures. The operation starts with the
native application and its data/libraries needed and the "Tincify" step that takes place. This step gen-
erates an encrypted docker image and produces a session to a remote third service (challenger). The
remote service runs also inside an enclave (so it can also be attested as well) and can store secrets
of the functions. The last step is to deploy this produced encrypted docker image to a Piccolo Node
where the validation procedure takes place in order to receive secrets and execute the function.

4.2.1 Next Steps

The support of attestation and isolation through Intel SGX and SCONE for now is implemented
using Docker containers and a known (by all stakeholders) trusted attestation service. One challenge
worth exploring is whether such integration can take place using Kata Containers where the isolation
mechanisms are more fine-grained and provide greater level of security as described above.

Furthermore, certain nodes (Intel NUCs) on the PoC are configured to use Intel SGX v1, which
requires to define details of the enclave such as heap and stack size prior to its execution. This incurs
a burden for the application/service provider who needs to attempt different values before reaching
an appropriate one for its trusted computing. Our next step is to configure the nodes to support Intel
SGX v2 which provides a dynamic runtime configuration without the need to state the aforementioned
properties of an enclave.

16The configuration for that policy is specified in the policy that is generated during the Tincify process.

CO PICCOLO consortium 2021 Page 35 of (43)

PICCOLO Deliverable D2.2

Figure 19: Converting a native application to a TINC/Piccolo function along with attestation operation.

CO PICCOLO consortium 2021 Page 36 of (43)

PICCOLO Deliverable D2.2

5 Conclusion

In this report we have shown how each of the Proof of Concepts map the ideas described in the ini-
tial node architecture to real-world scenarios. No single Proof of Concept covers every aspect of the
architecture but as the implementations mature, via the next steps described below, we expect a more
complete picture of the requirements and constraints to emerge. This will enable us to refine elements
within the architecture specification, such as the various APIs, whilst retaining the flexibility to ad-
dress a wide-range of potential use-cases. This report also shows that the implementation of a Piccolo
node is not limited to a specific class of devices - nodes may be small embedded-systems or even
server-class machines running containers or entire virtual machines. There is a delicate balance to be
achieved in defining how much detail is required in the Piccolo APIs to enable effective deployment
of applications across this expanse of capabilities.

Next steps and challenges:

Behavioural risk node: Our primary next step is to investigate the usage of the Piccolo API from
the evaluation of the first Proof of Concept deployment for both of the processing pipelines (i.e.
the vision processing pipeline and the in-vehicular data processing pipeline). Furthermore, we
aim to provide better support to application providers in function deployment and management
while simultaneously allowing for more complex and generic types of workloads. Additionally,
we plan to research and support schemes for improved failure management and checkpointing
operations as well as enhance our network stack by leveraging from the Information-Centric
Networking (ICN) domain.

Smart factory node: Efforts are currently focused on a simulator application instead of the actual
node implementation. For the node it is possible to re-use the components of the simulator
(which is already a distributed application consisting of nodes) and hence development will be-
gin with a migration of these components into a dedicated standalone application. In particular
large parts of the simulator can be converted into a digital twin component.

Time-Sensitive Networking & docker node: We will continue enhancing the basic docker node
implementation on the TrustNode platform to implement Time-Sensitive Networking for an in-
network computing Proof of Concept. The next steps will be to include all the elements in a
setup, with verification checks of the Piccolo agent implementation and accelerated hardware
components.

𝜇Actor: We plan to improve the initial system by adding executors for additional languages and
bytecodes, e.g., WebAssembly, automating the management of the network topology, and im-
plementing various security features. Furthermore, we plan to improve the developer experi-
ence by providing additional tools and documentation. Finally, we plan to experiment with
various actor-based orchestration systems and improve the scalability of the approach in larger
networks [14].

CO PICCOLO consortium 2021 Page 37 of (43)

PICCOLO Deliverable D2.2

Isolation and security: Next steps include measuring the cost of using Lightweight Virtual Ma-
chines to provide increased isolation over native containers. Further ahead, we want to look at
how features of the Arm Confidential Computing Architecture could be utilized to provided the
increased isolation and security with lower overheads than is currently possible. There will be
challenges to overcome as this work will have to be done using models because hardware is
unlikely to be available in time.

CO PICCOLO consortium 2021 Page 38 of (43)

PICCOLO Deliverable D2.2

References

[1] Piccolo Project. Piccolo Node definition. Tech. rep. Deliverable D2.1. 2021. url: https://www.
piccolo-project.org/assets/Deliverables/Piccolo_Del2.1_Piccolo_Node_definition.pdf.

[2] Piccolo Project. Use Cases, Application Designs and Technical Requirements. Tech. rep. Deliv-
erable D1.1. 2021. url: https://piccolo-project.org/assets/Deliverables/Piccolo_Del1.1_Use_
cases__application_designs_and_technical_requirements.pdf.

[3] Piccolo Project. Application Design and Development Report. Tech. rep. Deliverable D1.2. 2021.

[4] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. “Trusted execution envi-
ronment: What it is, and what it is not”. In: Proceedings - 14th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2015 1 (Dec. 2015),
pp. 57–64.

[5] Intel® Software Guard Extensions. url: https://software.intel.com/content/www/us/en/develop/
topics/software-guard-extensions.html (visited on 03/05/2021).

[6] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In: 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 689–703. isbn: 978-1-931971-33-1. url: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov.

[7] TensorFlow. url: https://www.tensorflow.org/ (visited on 09/06/2021).

[8] OpenVINOTM Toolkit Overview - OpenVINOTM Toolkit. url: https : / / docs.openvinotoolkit .org /
latest/index.html (visited on 09/06/2021).

[9] Piccolo Project. Piccolo Initial Infrastructure Architecture. Deliverable D3.2. 2021.

[10] Sconify - SCONE Confidential Computing. url: https://sconedocs.github.io/sconify/ (visited on
09/17/2021).

[11] International Electrotechnical Commission. IEC 61499 Function blocks - Parts 1-4. 2012.

[12] RTEMS. url: https://www.rtems.org/ (visited on 03/03/2021).

[13] Erlang Code Server. url: https://erlang.org/doc/man/code.html (visited on 03/03/2021).

[14] Raphael Hetzel, Teemu Kärkkäinen, and Jörg Ott. “𝜇Actor: Stateful Serverless at the Edge”. In:
1st Workshop on Serverless Mobile Networking for 6G Communications. MobileServerless’21.
ACM, 2021.

[15] Piccolo Project. Architectural invariants for distributed computing and technical requirements.
Tech. rep. Deliverable D3.1. 2021. url: https://www.piccolo-project.org/assets/Deliverables/
Piccolo_Del3.1_Architectural_invariants_for_distributed_computing_and_technical_requirements.
pdf.

[16] Cloudflare, Inc. Cloudflare Workers. 2021. url: https : / / workers . cloudflare . com/ (visited on
09/06/2021).

[17] Antonio Carzaniga and Alexander L. Wolf. “Content-Based Networking: A New Communication
Infrastructure”. In: IMWS 2001. Springer, 2001.

CO PICCOLO consortium 2021 Page 39 of (43)

https://www.piccolo-project.org/assets/Deliverables/Piccolo_Del2.1_Piccolo_Node_definition.pdf
https://www.piccolo-project.org/assets/Deliverables/Piccolo_Del2.1_Piccolo_Node_definition.pdf
https://piccolo-project.org/assets/Deliverables/Piccolo_Del1.1_Use_cases__application_designs_and_technical_requirements.pdf
https://piccolo-project.org/assets/Deliverables/Piccolo_Del1.1_Use_cases__application_designs_and_technical_requirements.pdf
https://piccolo-project.org/assets/Deliverables/Piccolo_Del1.1_Use_cases__application_designs_and_technical_requirements.pdf
https://piccolo-project.org/assets/Deliverables/Piccolo_Del1.1_Use_cases__application_designs_and_technical_requirements.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.tensorflow.org/
https://docs.openvinotoolkit.org/latest/index.html
https://docs.openvinotoolkit.org/latest/index.html
https://sconedocs.github.io/sconify/
https://www.rtems.org/
https://erlang.org/doc/man/code.html
https://www.piccolo-project.org/assets/Deliverables/Piccolo_Del3.1_Architectural_invariants_for_distributed_computing_and_technical_requirements.pdf
https://www.piccolo-project.org/assets/Deliverables/Piccolo_Del3.1_Architectural_invariants_for_distributed_computing_and_technical_requirements.pdf
https://www.piccolo-project.org/assets/Deliverables/Piccolo_Del3.1_Architectural_invariants_for_distributed_computing_and_technical_requirements.pdf
https://workers.cloudflare.com/

PICCOLO Deliverable D2.2

[18] Antonio Carzaniga and Alexander L. Wolf. “Forwarding in a Content-based Network”. In: SIG-
COMM ’03. ACM, 2003.

[19] Raphael Hetzel. Decentralized Actor-based Orchestration of Networked Microcontrollers. Mas-
ter’s Thesis (unpublished). Technical University of Munich. 2020.

[20] Kata Containers Community. Kata containers. 2021. url: https://katacontainers.io (visited on
03/03/2021).

[21] Traditional vs Kata. url: https://katacontainers.io/learn (visited on 09/21/2021).

[22] Amazon Web Services. Firecracker. 2021. url: https://firecracker-microvm.github.io (visited on
08/31/2021).

[23] What is Cloud Hypervisor? url: https://github.com/cloud-hypervisor/cloud-hypervisor#1-what-
is-cloud-hypervisor (visited on 09/21/2021).

[24] Victor Costan and Srinivas Devadas. “Intel SGX Explained”. In: IACR Cryptol. ePrint Arch. (2016).

CO PICCOLO consortium 2021 Page 40 of (43)

https://katacontainers.io
https://katacontainers.io/learn
https://firecracker-microvm.github.io
https://github.com/cloud-hypervisor/cloud-hypervisor#1-what-is-cloud-hypervisor
https://github.com/cloud-hypervisor/cloud-hypervisor#1-what-is-cloud-hypervisor

PICCOLO Deliverable D2.2

Annex

A Appendix

A.1 Example: configuration of Docker Time-Sensitive Networking node
� �
[

2 {

"envname": "docker_env_1",

4 "objects": [

{

6 "type":"docker",

"resources_required":{

8 "accelerator":{"name":"TrustNode_TAS",

"type":"TAS","devicetype":"trustnode",

10 "interface":"mmi"}},

"name":"Piccolo2OPCUA_1",

12 "interface":[{"type":"rest","subtype":"rest2OPCUA","port":5001,

"TSN":{"max_latency_ns":5000, "bandwidth_kbs":20}}],

14 "config":"version: ’2’\nservices:\n test:\n\

image: innoroute/rest2opcua:latest\n\

16 ports:\n - ’56:5000’\n"

},

18],

"type": "docker",

20 "version": "2"

},

22 {"resources_provided":{

"accelerator":{"name":"TrustNode_TAS",

24 "type":"TAS","devicetype":"trustnode",

"interface":"mmi"}}

26 }

]� �
Listing 4: Piccolo Docker TSN node running configuration example

A.2 Example: IEC 61499 function block
� �

1 FUNCTION_BLOCK y e l l o w _ g r e e n

3 EVENT_INPUT
s e t WITH yel low , g r e e n ;

5 END_EVENT

7 EVENT_OUTPUT

CO PICCOLO consortium 2021 Page 41 of (43)

PICCOLO Deliverable D2.2

done WITH r , g ;
9 END_EVENT

11 VAR_INPUT
ye l l ow : INT ;

13 g r e e n : INT ;
END_VAR

15

VAR_OUTPUT
17 r : INT ;

g : INT ;
19 END_VAR

21 EC_STATES
i n i ;

23 s t a r t : map −> done ;
END_STATES

25

EC_TRANSITIONS
27 i n i TO s t a r t := s e t ;

s t a r t TO s t a r t := s e t ;
29 END_TRANSITIONS

31 ALGORITHM map i n ST :
g := g r e e n + ye l l o w ;

33 r := ye l l ow ;
END_ALGORITHM

35

END_FUNCTION_BLOCK� �
Listing 5: Structured Text representation of an example function block

Figure 20: Graphic representation of the example function block

CO PICCOLO consortium 2021 Page 42 of (43)

PICCOLO Deliverable D2.2

Figure 21: Grapic representation of the state machine of the example function block

� �
1> y e l l o w _ g r e e n : modu le_ in fo (f u n c t i o n s) .

2 [{ module_ info , 0 } ,
{ module_ info , 1 } ,

4 { e c _ s t a t e s , 0 } ,
{ i n i , 2 } ,

6 { s t a r t , 2 } ,
{ var , 1 } ,

8 { e v e n t _ i n , 0 } ,
{ e v e n t _ o u t , 0 } ,

10 { e v e n t _ o u t , 2 } ,
{ g e t _ h a n d l e r , 0 } ,

12 {map , 1 } ,
{ f b _ i n s t s , 0 } ,

14 { even t_conns , 0 } ,
{ da t a_ conns , 0 }]� �

Listing 6: List of Erlang functions in the compiled function block

This functions get called by our IEC 61499 runtime that starts a process for each function block.

CO PICCOLO consortium 2021 Page 43 of (43)

	Executive summary
	List of Authors
	List of Figures
	Abbreviations
	Definitions
	1 Introduction
	2 Piccolo node general view
	2.1 Piccolo Agent as a plug-in architecture
	2.2 Multi-Context Nature of the Piccolo API

	3 Piccolo node implementations
	3.1 Behavioural Risk
	3.1.1 Trusted In-Network Computing Node
	3.1.2 Integration with the Behavioural Risk PoC

	3.2 Smart Factory
	3.2.1 Node design
	3.2.2 API considerations

	3.3 Piccolo docker node
	3.3.1 Basic Docker node

	3.4 Actor

	4 PoC Isolation and Security discussion
	4.1 Lightweight Virtualization
	4.1.1 Results
	4.1.2 Further work

	4.2 Behavioural Risk Monitoring Proof of Concept - Security Concepts
	4.2.1 Next Steps

	5 Conclusion
	A Appendix
	A.1 Example: configuration of Docker Time-Sensitive Networking node
	A.2 Example: IEC 61499 function block

