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Executive Summary

Piccolo’s aim is to develop a new type of flexible distributed computing framework, and to apply this
to a set of relevant application scenarios.

This document presents our work about the overall distributed computing ‘infrastructure’, at the half-
way stage of the project’s two year timespan.

We have focused our work on advancing various implementations in order to get the Proof-of-Concept
demonstrators working as soon as possible. As a side effect, it shows that the Piccolo mechanisms and
APIs can be implemented on a variety of platforms and programming environments. This bottom-up
work complements our earlier document, which took more of a top-down approach (Del3.1, Archi-
tectural invariants for distributed computing and Technical requirements).

The latest progress is reported about:

• Overall architecture design, with a particular focus on the critical topic of identification and
addressing.

• Orchestration elements - we explore several approaches in different contexts, including hier-
archical, decentralised and semi-decentralised orchestration.

• Resource management elements - again, we explore several approaches in different contexts,
including decentralised, auction-based and reservation-based resource management.

• Other elements - which covers some other topics that we have investigated.
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1 Introduction

A Piccolo system is a distributed computing environment that runs functions and actors pertaining
to a distributed application. Piccolo manages the distribution of those components, provides com-
munication abstractions and Application Programming Interfaces (APIs), enables efficient resource
allocation, availability and scalability support, and other services.

Piccolo is now half-way through its two year timespan. This document presents our work about
the overall distributed computing ‘infrastructure’ ; the companion document Del2.2 [1] covers the
individual nodes ; whilst Del1.2 [2] reports on the Proof of Concept demos. Therefore the document
provides a snapshot.

In the earlier deliverable, Del3.1 [3], we studied technical requirements and design goals that arise
from several interesting use cases, and derived some ‘architectural invariants’ - architectural pillars
and system properties.

In this document we advance the work in various practical implementations, concentrating on two
main topics: orchestration and resource management - with sub-sections about the detailed work for
each proof of concept demonstrator. At this point we have taken a bottom-up approach, in order to get
the demonstrators working. It also shows that the Piccolo mechanisms and APIs can be implemented
on a variety of platforms and programming environments. Next, planned work will re-integrate into a
more conceptually unified framework.

The document is structured as follows:

• Architecture invariants.

• Overall architecture design, with a particular focus on the critical topic of identification and
addressing.

• Orchestration elements - a hierarchical orchestrator ; a semi-decentralised orchestrator ; a
decentralised orchestrator for an ICN-based dataflow system ; a hybrid approach ; orchestration
for the Smart factory use case and node type.

• Resource management elements - an ICN-based dataflow system, with decentralised scaling
; an auction-based marketplace approach to resource allocation ; and resource management for
time syncronised networking.

• Other elements - a description of the in-network compute simulator ; the concept of a federation
of operators that all offer in-network compute in a consistent manner ; and an investigation
into whether Erlang can be suitable for implementing a Continuous Verification - Operations,
Administration and Maintenance (CV-OAM) environment for a network provider.
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2 Architecture invariants

Piccolo’s aim is to develop a new type of flexible distributed computing framework, and to apply this
to a set of relevant application scenarios.

In our earlier Deliverable D1.1 [4], we studied four use cases areas that are promising for in-network
computing: vision processing; connected and automated driving; smart factory; and network oper-
ations and management. We analysed the requirements and design goals that arise from these use
cases, which fall into the following categories:

• Heterogeneity: a Piccolo edge compute system is likely to include multiple sorts of hardware
(such as Graphics Processing Unit (GPU) as well as general purpose processors), operating
system, virtualisation solution (virtual machine, container or bare metal) and communications
models (including data stream processing, publish /subscribe and remote method invocation).

• Initialisation capabilities: the Piccolo system needs to support discovery of the preferred com-
pute node and resource management. The Piccolo functions (the compute tasks) need to be
placed sensibly - on a single node, or more likely distributed across several nodes. The place-
ments needs to bear in mind the end usersâ requirements and the operator’s policies.

• In-life capabilities: for example, resilience and scaling, so that applications can scale and con-
tinue to work well despite failures or bottlenecks. The system also needs to handle mobility of
the end hosts, whilst continuing to distribute compute tasks efficiently in the network.

• Security and privacy: to authorise compute inputs, secure the execution of compute tasks and
ensure that the compute results are correct, valid, verified and can be trusted. These features
must work with multi-tenancy, since there will be several independent tenants (customers) being
served by the same Piccolo system.

In the context of the above requirements, the project has derived some ’invariants’ - architectural
pillars and system properties - that are summarised below:

• Piccolo agent - this entity runs on each Piccolo node. It manages the execution environment of
the node (which provides the runtime environment that Piccolo functions are executed within)
and also provides the control plane API, which interfaces the node and its capabilities to the
other nodes in the Piccolo system.

• Actor model as a fundamental abstraction - All computations are modelled using ’actors’:
computational entities that only communicate using messaging and maintain local, mutable
state that is not accessible by other actors. When an actor processes a message, it may send
messages to other actors (asynchronously), modify its local state, and create additional actors.
The Actor approach is followed by the Erlang and Akka runtime systems, for instance. For
Piccolo, Actors provide a natural abstraction for state and lifecycle rules, network transparency,
isolation, scaling and resilience.

CO PICCOLO consortium 2021 Page 10 of (57)



PICCOLO Deliverable D3.2

• Location-independent, nested naming - in Piccolo applications should use names, so that they
are address agnostic. Actors (functions) are named independently from nodes (infrastructure),
so that names can be nested, and in fact there can be multiple layers of nesting (’recursion’).
Hence calling a function (which means sending a message to an actor) can result in a chain
of additional function (actor) invocations. Another example of nesting is a function that runs
on a container, and the container is actually in a Virtual Machine (VM), which in turn runs
on bare metal. The namespaces at the different levels are totally independent, so that name
changes aren’t required at a ’client’ layer when there’s a change in the underlying infrastructure
(including an actor moving to a different node).

• Dynamic loading of functions onto nodes - functions can be instantiated on nodes dynami-
cally. One purpose is clearly to dynamically execute an application or service. Linking to the
previous invariant, it can also be part of achieving scalability and availability (resilience), and
handling mobility.

• Joint optimisation - Piccolo seeks to make a decision (at run-time) with respect to allocation of
compute, networking and storage resources (and in principle other resources such as energy), in
combination with the overall compute graph construction. We would like to leverage multiple
information sources with different levels of accuracy, timeliness, dynamicity, and convergence
properties as well as more static configuration such as developer, user, and operator require-
ments and policies. Approaches to explore include leveraging Interior Gateway Protocol (IGP)
information and auction-based resource allocation.

• Secure virtual processing - most applications will require a secure, multi-tenant processing en-
vironment, with isolation guarantees so one tenant cannot interfere with the operation of another
tenant. The protection must extend from application code (including an execution environment)
to application data. Examples of secure compute are Secure CONtainer Environment (SCONE),
a secure container framework, and Arm’s confidential compute architecture.

• Reliability through a generalised end-to-end principle - the end points of the distributed
function must implement reliability and consistency measures themselves, and cannot regard
reliability and consistency as something which can be delegated to capabilities within the in-
frastructure. It also implies that intermediate components do not need to be designed to guar-
antee reliability or consistency and can be optimised for latency and availability. This approach
is analogous to the end-to-end principle of ’soft state’ held by Internet protocols such as TCP,
PPP, and many routing protocols.

• Support heterogeneity of types of nodes and links - in order to allow the most adequate
platform and communication technologies to be chosen for specific functions in a distributed
system, Piccolo is agnostic to the hosting platform and supports different interaction types.

The architectural invariants are described in more detail in Deliverables D2.1 [5] and D3.1 [3], re-
spectively about the individual Piccolo node and the distributed system.

CO PICCOLO consortium 2021 Page 11 of (57)



PICCOLO Deliverable D3.2

In this document we progress our architectural work, developing the architectural invariants into a
more detailed initial design for the Piccolo infrastructure, whilst aspects relating to a Piccolo node are
refined in the companion document, D2.2 [1].
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3 Overall architecture design

In this section, we outline our architectural design tenets, following from and complementing the
invariants discussed in the previous section. Any architectural design needs to position itself with
respect to other technologies in a given space, embracing, replacing, or otherwise interacting with
them. This also holds for the Piccolo architecture and in-network as well as edge computing. With
the Internet as the context and distributed service provisioning as the goal, the key – and essential!
– invariant guiding the overall architectural design is supporting heterogeneity and, to this end, we
choose to position the Piccolo architecture in a way able to embrace and interact with other systems,
rather than prescribing a particular encompassing system design in detail. This becomes manifest in
our design principles.

Heterogeneity is key because of the wide variety of infrastructure – devices with their associated oper-
ating systems and networks – both the variety of services to be realized for different use cases and the
frameworks and programming languages ultimately used to realize those use cases. For the Piccolo
architecture to be of broad use, its design must respect these differences - and even more dimensions
of heterogeneity as we will see below. This also applies to the varied environments in which Pic-
colo systems will be deployed: we obviously have an extensive Internet ecosystem, in which cloud
and in-network, edge, and Content Delivery Network (CDN) resources are complemented by user
devices, on-premise equipment, and possibly further sensing, actuation, interaction, and computation
infrastructure from third parties. An in-network compute architecture needs to get along with and
embrace and thus be able to draw resources from all of the above. That is, it is imperative that the
Piccolo architecture be designed to be part of something else! While Piccolo has a long-term vision
of network architectures that would support in-network computing better, its architectural design will
be able to operate in present-day network architectures, including the Internet, information-centric
networks, and domain-specific networks. The same holds for node architectures, processing flows
and communication demands of applications, etc.

These observations directly lead to the consequence of a fairly minimal design. In history, the Internet
Protocol has succeeded by placing minimal requirements on the underlying networks, allowing them
to be easily embraced as part of a larger vision, thus not placing undue burden and complexity on the
existing networks. In Piccolo, we follow a similar approach: we place only minimal requirements on
nodes to be part of the Piccolo architecture. We do not require a specific operating system, abstraction
level, virtualization technology, language, etc. but only ask systems to offer two minimal interfaces
towards a Piccolo agent:

• a protocol for the exchange of information with other Piccolo nodes

• local APIs for the Piccolo agent to invoke and interact with execution environments and actors
(see Del2.2 [1]).

For both interfaces, the semantics need to be agreed upon but the realization may be platform-specific
in the case of APIs and domain- or deployment-specific for the protocols. For open deployments, a
“standardized” protocol specification is required.
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This minimal design leaves most other aspects up to the specific applications: for example, which
protocols actors use to exchange information, what their communication patterns and performance
demands are, their scale and topological organization, among others. The Piccolo architecture only
facilitates finding suitable nodes to run such actors, instantiate them, and then provide an environment
in which the actors can exchange information with their peers according to their needs. But Piccolo
stays clear of the actual information exchange, even though it could offer simple message passing to
facilitate the interaction.

In this section, we first recap the architectural elements of Piccolo in subsection 3.1. We then discuss
the key concepts of node identification and addressing in subsection 3.2. We finally turn our atten-
tion to orchestration and resource management principles, the key constituents of the architecture in
section 3.3, which we will detail further in later chapters.

3.1 Architecture Outline

The Piccolo architecture is comprised of node execution environments (nodes with agents that en-
able execution of actor code and communication with other actors), a fundamental message-based
communication service for actors (that enables additional interaction styles), and an infrastructure
resource management framework, where agents on nodes perform management functions on behalf
of the instantiated actors on these nodes.

Agents provide APIs for inter-actor communication and management functions to actors and can
implement them in specific ways (depending on the Piccolo context), i.e., there can be different im-
plementations of Piccolo systems that adhere to this conceptual framework but use specific distributed
computing environments and protocols to implement them.

Two examples would be: an Information-Centric Networking (ICN)-based Piccolo system that imple-
ments all communication with Named Data Networking protocols; and an Erlang-based system that
leverages Erlang Distribution (the already existing distributed computing service in Erlang). In both
environments, actors would use isomorphic APIs, but the details of working with the API as well as
the resulting agent actions would be specific to the respective environment.

One important aspect in Piccolo’s distributed computing system is resource management. This in-
cludes allocation of computing resources as well as communication resources (network capacity).
Specific instantiations of the Piccolo concepts can provide their own resource model and specific
ways for describing and managing these resources. In the current state of the project, we are experi-
menting with different environment-specific approaches, and the insights from these experiments will
lead to a more general model and possibly to corresponding API updates.

Running Piccolo systems can be supported by a bespoke orchestration system that monitors availabil-
ity, performance and that can assist in instantiating applications, managing their initial and run-time
resource consumption etc. However, there are some Piccolo systems that do not require an explicit,
central orchestration service, such as the ICN Dataflow system introduced in section 4.3.2. In such a
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system, the respective agents would implement resource-management-related functions (e.g., scaling
out) in a distributed manner, i.e., employing decentralized orchestration.

One particularly important concept in the Piccolo architecture is identification and naming, pertaining
to how to refer to underlying infrastructure, actors in a distributed system, computation results etc.
We will discuss this concept in more detail in the next section.

3.2 Piccolo Approach to Identification and Addressing

As Piccolo is creating an extensible distributed framework, consistent identification and addressing of
actors across potentially multiple nodes is essential to achieving this objective. There are two aspects
to this identification: (1) the names and identifiers used within a particular Piccolo service (instance),
i.e., the name space from which actor names and identifiers are chosen. This namespace is relevant to
the composition of services (or: applications) from actors and visible and relevant to the internal ser-
vice logic of each individual service. This name space is shielded from the surrounding environments,
and the service components, i.e., actors, have exclusive use of their own name space and identifiers.
(2) The Piccolo nodes on which the Piccolo actors are executed “live” in their surrounding network-
ing environment which defines the name space for the names and identifiers that are used to exchange
data between the nodes in that networking environment (e.g., using IPv4, IPv6, NDN, L2 networks).
This name space is under control of the surrounding network. It is up to the Piccolo orchestration
and management to provide adequate mappings between these address spaces, which may take many
different shapes, including (but not limited to) name/address resolution, identifier mapping, creating
overlays, tunneling, and/or indirect message forwarding via Piccolo agents. In this section, we discuss
the architectural aspects of naming in Piccolo.

As with many aspect of Piccolo architecture, at this stage of the project, the emphasis is on developing
proof of concepts for “bottom-up” use cases rather than “top-down” architecture. Developing top-
down architecture will follow over the coming months by developing common abstractions from the
Proof of Concepts (PoCs). This approach ensures that the common architecture is suitable for and
tested against a wide variety of scenarios.

Identification and addressing schemes fit within this framework for the project. Each PoC currently
exploits identification and addressing suitable for its use case without imposing top-down restrictions
at this stage.

However, identification and addressing is sufficiently important that it is helpful to have formed a
initial view on how the many different schemes from the PoCs might be harmonised. Broadly, there
are two alternatives:

• Design a single consistent scheme and retro-fit the existing PoC designs to this new scheme.

• Design an architecture which can aggregate and integrate different independent schemes into a
single overall architecturally consistent framework.

CO PICCOLO consortium 2021 Page 15 of (57)



PICCOLO Deliverable D3.2

In Piccolo, we have chosen the latter option.

Piccolo’s scope therefore includes many existing and well established identification and addressing
schemes, for example IP addressing, the domain name system, and composite schemes like URLs,
and in order for Piccolo to have a credible evolutionary path for initial deployments, it is important
that these existing schemes can be included into a consistent Piccolo identification architecture.

The identification and addressing architecture in Piccolo is based a number of principles. At this
stage, these principles are at a ‘strawman’ stage and will be developed in the next stage of the project.
So some or all of them may well be refined.

• The Piccolo identification and addressing architecture is able to incorporate existing schemes
as needed.

• Where possible and within the limits of existing schemes, Piccolo identification and addressing
are easily extensible.

• There is great importance to the linkage between identification schemes, for example using
distributed lookup systems, and there is no need to select one scheme above others.

• The architecture of identification and addressing in Piccolo is based on the dynamic construc-
tion of identifiers appropriate to a specific context/scope and the requirement is that they are
unambiguous in their context.

• A specific context/scope itself has an identifier.

• A context/scope can be dynamically nested giving dynamically concatenated identifiers.

• The scheme used at one level of nesting does not need to be the same as at another level so it
is possible to dynamically create new composite schemes by dynamically prefixing or suffixing
one scheme with a different scheme.

• The order of concatenation is dynamic and flexible.

• While top-down global allocation schemes designed to assure global uniqueness will guarantee
unambiguity in context, they can create many other restrictions which are incompatible with
many of the principles set out above.

• Global uniqueness can be created dynamically if needed by dynamically placing a context
within a wider context which guarantees global uniqueness.

This approach differs in emphasis to many existing schemes (including many of the systems that
Piccolo includes within its architecture) which are often based on the idea of a single consistent
scheme. Moreover, often with other projects the emphasis is on guaranteeing global uniqueness within
an identification scheme and another related focus is often fully internalising and eliding any linkage
to any different internal identification scheme, for example making invisible the specific physical
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location of a function with a visible logical identity.

By way of an important illustration of the need for a flexible system is the limitation that is currently
imposed by the URL scheme used in micro-services. In the URL, the domain name/IP address must
precede the name of the function being called which means that the location of the function must
be known and defined at the time of the call. This is not aligned with a basic objective of Piccolo
where the function can be called by name and the call is forwarded transparently to the most efficient
location hosting the function. This issue is one of the issues addressed by service mesh solutions.

3.3 Orchestration and Resource Management

As discussed in the previous section, a namespace forms the universe in which Piccolo actors ex-
change information to realize an application or service. Once active, the actors run on interconnected
Piccolo nodes. Before that, these nodes need to be chosen, the actor code moved to and instantiated
on them, and the necessary network mappings need to be put in place. Exercising these parts is the
task of the Piccolo orchestration system and, for per-node execution, that of the individual Piccolo
agents running on these nodes. Specifically, two tasks make up the overall Piccolo orchestration:

Firstly, this requires the Piccolo orchestration to understand which Piccolo nodes are actually capable
of executing the respective actors. This is limited by the hardware platform, instruction set architec-
ture, operating system, and virtualization environment (and thus the execution environment) available
on each Piccolo node: only nodes compatible with the actors needs can be chosen. Moreover, actors
may require specific peripheral devices, e.g., sensors or actuators, or GPUs, for their operation: only
nodes with such peripherals can be chosen. Finally, Piccolo nodes may have vastly different capabil-
ities, in terms of main memory, computing power, storage capacity, and network interfaces, and they
may face further limitations such as running on battery. A meta description can be used to express,
on the one hand, the properties, capabilities, and constraints of each Piccolo node and, on the other
hand, the requirements of the individual actors (and possibly the changes in demand as they scale).
This process yields a set of nodes suitable to execute the application actors.

Secondly, the Piccolo orchestration is responsible for determining how to distribute the actors of an
application to one or more of these suitable Piccolo nodes – and then invoke the actual distribution
and/or instantiation of the actor code via the per-node Piccolo agents. This means that in-network
resources – computation and storage and well as messaging capacities across the links and paths in-
terconnecting the chosen Piccolo nodes – have to be allocated to the respective application for the
expected time of its execution (cf. joint optimization). For this purpose, the Piccolo orchestration
needs to be aware of the available (and possibly the total) resources on the Piccolo nodes that should
be considered for execution. Since Piccolo aims at short application response times, actors should
be distributed to nodes close to each other and close to their user(s); the network capacities and es-
pecially one-way delays between nodes may thus guide which subset of nodes is suitable to run an
application instance (for a given set of users). To this end, metadata about the interactions among
actors (frequency, latency demands, data volume per transaction) could describe the placement con-
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straints to be imposed on the node choice. At the same time, for a dynamic system, the overhead for
(re)instantiating and moving code and/or data between nodes needs to be considered. This match-
ing step may also involve suspending, moving, and reinstantiating other actors to make room for the
actors of a new application (instance).

This orchestration and resource allocation process can be realized in many different ways. As dis-
cussed in D3.1 [3], cloud infrastructure uses a tight coupling between a central controller and the
managed nodes, whereas edge systems reduce the tightness of the control loop. Fundamentally,
orchestration may be centralized around a core orchestrator that takes all decisions or it may be dis-
tributed. Distributed orchestration may employ a strict hierarchy with strictly defined information and
decision flows, or may be fully decentralized with equal peers negotiating which actors should run
where. This may be aided by auctioning mechanisms to include the application’s view and the cost in
a heterogeneous environment with multiple suppliers, or it may be a single provider that could strive,
e.g., for its own resource optimization. In an extreme case, the orchestration may be fully decentral-
ized across the – then unmanaged, at least from the perspective of orchestration – nodes, realizing
bottom up orchestration. In such a case, for example, an application might be brought to a compute
node that determines which actors it can execute locally and which ones it needs to outsource; for the
latter, the node would then contact neighboring nodes it is aware of to get help in running the actors.
Status information exchange may flow in all of the above cases, from compute nodes to orchestrator
nodes, among orchestrator nodes, and among compute nodes. The level of detail and the frequency
of information exchange – i.e., the degree of coupling the nodes – may vary. Even within the same
system, close-by nodes may exchange more detailed information more frequently compared to remote
nodes, and lower hierarchy levels may perform richer information exchange compared to higher ones,
etc.

The Piccolo architecture does not demand a particular mode of operation. On the Piccolo nodes,
the Piccolo agent is responsible for its integration in the broader Piccolo system, which is done via
its protocol interface. This interface supports exporting the (static) node properties as well as the
(dynamic) resource availability. It may be used to receive instructions of what to execute (and obtain
the corresponding code). But a Piccolo agent may also take local decisions, inform other nodes about
its operational state (running actors, etc.) and actively ask other Piccolo nodes if they can execute
one or more actors, which those may acknowledge or deny. This conceptual combination of status
sharing on the one hand and sending/receiving inquiries and instruction on the other allows for the
aforementioned flexibility when creating different types of Piccolo orchestrators.

In the following two chapters, we will first discuss sample Piccolo orchestrators that represent differ-
ent points in the design space and then discuss Piccolo resource management mechanisms.
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4 Orchestration Elements

In the past years, several different architectural solutions have been proposed to simplify the develop-
ment and deployment of application and services at the network edge. Mostly inspired and driven by
the design of data centre solutions, they are often found ineffective for heterogeneous deployments
(including compute and network) due to their strong assumption on the underlying infrastructure.
The following section present solutions to orchestrate applications and service at the network edge of
heterogeneous deployments.

4.1 Hierarchical Orchestration over Edge Infrastructures - EdgeIO

This section presents EdgeIO – a hierarchical orchestration framework designed to support the inher-
ent heterogeneity of hardware, software and management commonly existing in edge infrastructures.
The framework enables multiple network operators to contribute their resources towards a shared in-
frastructure, thereby significantly reducing required investments to achieve a dense computing fabric
at the edge. Simultaneously, EdgeIO employs a delegated scheduling mechanism that decentralizes
the task placement problem across the hierarchy to support optimal application service deployment
at scale. The following section discusses the general problem of scheduling and orchestration at the
edge and why existing cloud-based approaches (and derived solutions) are ineffective for edge infras-
tructures. Further we present how the proposed hierarchical (and clustered) design of EdgeIO enables
both edge resource providers to contribute and manage their resources; and developers to find opti-
mal resources at the edge to match their service’s strict operational requirements with relative ease.
EdgeIO follows the heterogeneity principles core to the Piccolo operation as it enables services vir-
tualized in variety of computational abstractions (containers, actors, functions, etc.) to operate over
variety of hardware configurations.

4.1.1 Problem Statement

Several different understandings of edge architectures co-exist currently, all aiming to incorporate
resources deployed in varying environments (home, factory, city) with varying hardware capabili-
ties (Accelerated Processing Unit (APU), accelerators, Field Programmable Gate Arrays (FPGAs))
and behind different administrative boundaries (Internet Service Provider (ISP), industrial, crowd
sourced) [6, 7]. As a result, typical software solutions for managing and deploying services at the
edge, e.g. Kubernetes1, ioFog2, FogO53, KubeEdge4, etc. are often found to be ineffective since
their inherent design is often a variant of existing data centre-centric frameworks. Specifically, exist-
ing frameworks make strong assumptions about the underlying infrastructure for optimal operation,

1https://kubernetes.io/
2https://iofog.org/
3https://fog05.io/
4https://kubeedge.io/en/
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Figure 1: EdgeIO framework.

which was found to be a limiting factor when porting to edge infrastructures [8]. For example, most
frameworks requires all processing resources to be in the same cluster (and therefore directly reach-
able from each other), just like data centres, which does not always hold true for processing units
in the edge. The most inhibiting factor affecting the performance of existing orchestration frame-
works in edge environments is: (i) ability to handle the heterogeneity of the devices making up the
infrastructure (ii) scale of devices that span large geographical regions and (iii) different management
entities that may collaborate together to contribute their resources to a larger infrastructure.

4.1.2 EdgeIO Description

Figure 1 shows the proposed architecture of EdgeIO. The distinguishing feature of EdgeIO to exist-
ing orchestration solutions is its semi-decentralized management by fragmenting edge infrastructure
into multiple federated clusters. The Root Orchestrator is a centralized control plane in the cloud
that includes modules for interfacing with clients/developers (system manager) and providing aggre-
gated management over connected clusters; storing aggregated information of connected resources
(shown as Nodes) and deployed services in the root database, while the Cluster Orchestrator handles
minute management of edge resources within a cluster’s administrative boundary. Each cluster repre-
sents a logical separation between edge resource groups, based on location, ownership, type, etc. [9].
Furthermore, multiple abstractions within the same organization (e.g. different location groupings
of ISP base stations) can be supported as nested cluster memberships organized in a tree-like hi-
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erarchy. EdgeIO integrates edge resources behind firewalls, proxies and Network Address Trans-
lations (NATs) (i.e. resources with private IPs) with the infrastructure-at-large using standardized
message-passing protocols and APIs (e.g. Message Queuing Telemetry Transport (MQTT), Rab-
bitMQ, Representational State Transfer (REST)) for information sharing and federated management.
Periodically, worker nodes (or Piccolo nodes) in EdgeIO updates their local cluster orchestrator of
their current load, running services and other changes in configurations (e.g. location updates). By
design, the cluster orchestrator withholds detailed information about individual resources to retain
administrative control. The cluster orchestrator aggregates the information of its cluster resources
and sends the combined metrics to the root orchestrator.

EdgeIO’s unique hierarchical orchestration is designed from ground-up to enable edge computing
applications. Multiple operational entities can contribute their local deployments towards a shared
edge infrastructure while retaining administrative control through EdgeIO’s unique multi-cluster re-
source management. As a result, EdgeIO provides a unique opportunity to realize a dense compute
fabric at the network edge without significant investments in deployment. Developers interested in
deploying their applications at the edge submit the application code and a Yet Another Markup Lan-
guage (YAML)-formatted list of Service-Level Agreements (SLAs) to the orchestrator via an API to
the service manager at the root orchestrator. The service manager notifies the system manager at
the root of the new deployment request, which registers the service in the local database. The system
manager further contacts the root scheduler to calculate a priority list of clusters best suited to deploy
the application.

Scheduling process in EdgeIO differs from most other orchestration frameworks to support the vast
scale of edge infrastructure. Instead of scheduler in root being responsible for finding the optimal
placement of developer submitted service on an edge server, EdgeIO follows delegated scheduling.
The root scheduler only finds the target cluster for executing the application by filtering out all clusters
not suitable for the task, e.g., not enough resource availability, not in the target geographical region, no
support for the desired virtualization, etc. Once a suitable priority list of cluster capable of supporting
the application is created, the root delegates the service scheduling task to the cluster scheduler.
After receiving the placement request, the cluster scheduler calculates the optimal deployment of the
service on workers within the cluster. The scheduler utilizes a best-fit policy where the worker node
that best satisfies the operational constraints defined by the developer in the SLA of the service is
selected. The cluster orchestrator further contacts the selected worker node and requests to deploy
the service. Since edge infrastructures can be highly dynamic and resource utilization can change
within status updates, it is quite possible that the worker selected by cluster scheduler can not support
the SLA requirements of the service anymore. In this case, an explicit reject notification is triggered
by the worker node to the cluster orchestrator, which calculates next possible resource within the
cluster boundary that can support the service. If none of the resources in the cluster can support the
service, the cluster orchestrator sends a Not ACKnowledgement (NACK) to root orchestrator, which
in turn contacts the next cluster orchestrator in the priority list. On the other hand, if the worker node
accepts the deployment request, the cluster orchestrator ACKnowledgements (ACKs) the root of the
deployment. Note that since scheduling logic in EdgeIO is decoupled, each infrastructure operator
can fine-tune the utilization of its resources by employing different service scheduling rules that are
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only valid within that cluster boundary.

With its unique hierarchical orchestration design, EdgeIO addresses the scalabiility of resources and
services challenge targeted by Piccolo. Both large and individual resource providers can participate in
the infrastructure at large by setting up their own cluster of resources over which they retain complete
management control. Thanks to the clustered design and delegated scheduling mechanism, EdgeIO
also addresses the decentralization research challenge within Piccolo – as the orchestrator can find op-
timal resources for operating applications at the edge without having to the solve NP-hard scheduling
problems [10, 7].

4.2 Self-Organizing Service Orchestation - VineIO

This section presents VineIO – an autonomous self-organizing service orchestration system that en-
ables flexible and automated orchestration of services that react to dynamic changes in the environ-
ment. Through its unique bottom-up orchestration policy, VineIO plugs in a prominent gap in edge
service placement research – dynamicity. This section describes the core problem that exists when
scheduling mobile and flexible services of next-generation applications on an edge infrastructure.
Further, we present the internal design of VineIO self-orchestration principle and how Piccolo agents
managed by VineIO can automatically adapt to changes in network, environment and application
operations.

4.2.1 Problem Description

Even though EdgeIO distributes scheduling over multiple participants forming a hierarchical schedul-
ing mechanism allowing flexible and accelerated service deployment at the edge, it is still incapable of
adapting to frequent, highly-variable changes in the (user and edge infrastructure) environment. Take
for example the case of offloading driving logic for automated driving vehicles described in Piccolo
Deliverable 1.1 [4] Section 3.6. Considering the automated driving vehicle moves with the certain
velocity in the geographical area, the logic function that supports its operation must always remain
within optimal latency of the vehicle. In this, the scheduling block of an orchestration framework
designed for edge infrastructures must be able to sample the current utilization of the resources and
dynamically update the service placement as the SLA degrades. However, since service deployment
is a well-known NP-hard problem [7], handling scheduling in any centralized orchestrator (either at
root or cluster level) makes it difficult to handle dynamic changes in the environment state. In such a
scenario, the latency overhead of EdgeIO’s semi-decentralized scheduling mechanism would still be
too large to keep up with the vehicle’s speed. The service placement problem becomes further com-
plicated if one considers dynamic changes in available capacity of edge resources due to simultaneous
execution of other services on the infrastructure.
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Figure 2: VineIO framework.

4.2.2 VineIO Description

Fig. 2 shows the proposed design and operation of VineIO. VineIO provides autonomous management
and self-organizing capabilities to application services and will be implemented as an extension to ex-
isting virtualization technologies (e.g. virtual machine, container, etc.). Specifically, VineIO enables
virtualized services to self-monitor their Quality of Service (QoS) metrics (e.g. user requests, loca-
tion, hardware utilization, etc.) and trigger autonomous migration/replication to another edge server
in case they do not meet the SLA targets. The core component of VineIO is a utility function [11] that
is responsible for intelligently identifying (present and near-future) changes in the application perfor-
mance. By default, VineIO computes the utility at a network location 𝑗 which serves 𝜆𝑖 requests per
second from a subnet 𝑖 as follows:

U𝑗 = ((1 − 𝑤)𝑏 𝑗 + 𝑤
∑︁
∀𝑖∈𝑆

𝜆𝑖𝑙𝑖, 𝑗 ) (1)

where 𝑏 𝑗 is the cost of running VineIO instance at location 𝑗 , 𝑙𝑖, 𝑗 is the latency experienced by users
from subnet 𝑖 if served from network location 𝑗 , and 𝑤 is the weight parameter (0 ≤ 𝑤 ≤ 1) for
tuning the importance of the cost or latency component. In addition to function (1), VineIO allows to
plug-in other utility functions to further fine-tune the deployment of services in edge environments.
As a result, VineIO allows seamless movement of service within the edge infrastructure (spanning
many administrative boundaries) while relieving the application developer to “micro-manage" a large
set of deployed services at global scale and allowing services to react faster to the changes in the
environment.

Application deployment over VineIO is as follows: At the beginning, a single instance of the VineIO
encapsulated service is deployed over some node in the infrastructure. Each VineIO instance includes
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the developer submitted application service wrapped in a compatible virtualization technology (like
containers) and includes high-level SLA guidelines submitted by the developer that will guide the
future migration/replication decisions of the service. This instance assumes the (logical) role of the
root node (see Figure 2) and is, therefore, responsible for managing further deployment. The VineIO
root is also the direct point-of-access for the developer that contacts the node directly to assess the
current health and deployment for the service in the infrastructure. The deployment of root instance
can is possible either by the developer directly or through third-party orchestration framework like
EdgeIO (see Section 4.1).

VineIO service, once successfully deployed at the edge, forms a logical tree-like overlay attaching
itself as a child to VineIO manager in the root. The service tree grows organically as VineIO’s replicate
within the infrastructure, each replica becoming a child of its parent. The information and control flow
within the VineIO overlay is hierarchically organized (similar to hybrid DNS operation) where each
node directly manages and receives information from direct children. The VineIO service at the edge
continually monitors its application’s QoS and shares the performance metrics with its parent. In
return, the parent VineIO aggregates all its children’s information and transmits it to its own parent
and children. If the VineIO service detects that the QoS of the encapsulated application is unlikely
to meet the SLA targets, it informs the in-built cluster orchestrator to find a better-suited resource for
migration/replication – prioritizing the locality constraints of edge services. The request recursively
moves up the cluster hierarchy if no suitable resource is available at the cluster. Due to its unique
adaptive operation, VineIO is most suitable for enabling stringent next-gen applications where the
target deployment must change dynamically to adapt to changes in the environment, e.g. remote
drone control service (in Figure 2) must move alongside the drone, always maintaining the required
latency for control.

With the help of its bottom-up, self-organization orchestration design, VineIO enables Piccolo to sup-
port fully-decentralized resource allocations in heterogeneous environments. The VineIO wrapper
can be embedded within the Piccolo agent, thus making Piccolo services self-organizing, removing
any explicit orchestration shim layer (e.g. used by EdgeIO in Section 4.1) from the equation. Further-
more, the information and control message exchange design of VineIO can be leveraged by Piccolo
implementations to arrive at a consistent view on the available system resource for enabling robust
optimisation.

4.3 ICN-based Dataflow System

Information-centric networking (-ICN) is a paradigm that shifts the host-centric Internet into a data-
centric approach, with named data objects as the core of the model. ICN enables location-independent
communication, in-network caching, etc. We integrate ICN’s features with dataflow concepts in the
following system to implement a decentralised stream processing system.

ICN-based dataflow system presents a decentralised stream processing framework that builds on top
of Named Data Networking [12]. As this approach results in better resource utilization and receiver-

CO PICCOLO consortium 2021 Page 24 of (57)



PICCOLO Deliverable D3.2

driven communications, it contributes to the decentralisation of the system where scaling decisions,
fault tolerance, and orchestration tasks are managed by every actor that belongs to a dataflow.

The following system supports the Piccolo agent implementation per node. This agent will assist
actors while taking scalability and recovery decisions by providing the available resources in the
infrastructure in a joint optimisation approach. Moreover, we support location-independent naming
that spans the resources and communicating actors, i.e., every component in the system is named.
There is no need to map to host addresses, whether for communication between actors or during actor
placement.

The following sections discuss the general concept of existing centralised stream processing frame-
works and the drawbacks, the advantages of using the name-based approach for communications as
well as how orchestration and resource allocation are handled in a decentralised fashion.

4.3.1 Problem Statement

The Dataflow paradigm is a popular distributed computing abstraction that is leveraged by several
popular data processing frameworks such as Apache Flink [13] and Google Dataflow [14]. Funda-
mentally, Dataflow is based on the concept of asynchronous messaging between computing nodes,
where data controls program execution, i.e., computations are triggered by incoming data and as-
sociated conditions. This typically leads to very modular system architectures that enables re-use,
re-composition, and parallel execution naturally. Most of the popular distributed processing frame-
works today are implemented as overlays, i.e., they allow for instantiating computations and for inter-
connecting them, for example by creating and maintaining communication channels between nodes
such as system processes and micro-services with the help of a central orchestrator. These overlay
connections do not necessarily follow optimal paths, i.e., the communication flows are incongruent
with the logical data flows. This results from the fact that orchestrators may have visibility into com-
pute resource availability but typically have to treat the communication network (e.g., TCP/IP) as a
black box.

In some variants of Dataflow, for example, stream processing, it can be attractive if one computa-
tion output can be consumed by multiple downstream functions. Connection-based overlays such
as Flink typically require duplicating the data for each such connection, incurring significant over-
heads. Moreover, as a sender-driven system, Flink’s inter-task communication requires back pressure
or credit-based flow-control system to avoid overrunning downstream consumers, resulting in mul-
tiple flow control loops: at TCP and the task manager side, which can be seen as an unnecessary
complication.

One key goal for Dataflow systems is to enable parallel execution, i.e., one computation is run in
parallel, which also affects the communication relationships with upstream producers and downstream
consumers. For example, when parallelizing a computation step, it typically implies that each instance
is consuming a partition of the inputs instead of all the inputs. An indirection- and connection-based
approach makes it harder to configure (and especially to dynamically re-configure) such dataflow
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graphs.

The connection-based approach incurs several architectural problems and inefficiencies as mentioned
above, for example, application logic is concerned with receiving and producing data as a result
of computation processes but connections imply transport end-point addresses that are typically not
congruent. This typically implies a mapping or orchestration system.

Apache Flink, for instance, embraces a central orchestrator referred to as the "JobManager". This Job-
Manager monitors worker nodes, react to failures, handles resource allocation, and maps the dataflow
graph to the worker nodes [15]. As mentioned above, the orchestrator’s decisions are based on com-
puting resources only. This, combined with the connection-based approach, might result in a less
efficient dataflow execution that does not optimally match the logical dataflow graph. In the next
section, we present our ICN-based data flow system design that aims to overcome these complexities
and avoid the connection-based overlays in the system.

4.3.2 ICN-based Dataflow System Design

The Information-Centric Dataflow system approach supports traditional Dataflow with Information-
Centric Networking principles and can be used as a drop-in replacement for existing Dataflow-based
frameworks. Its objectives are: (i) reducing complexity in Dataflow systems by removing connection-
based overlays and corresponding orchestration requirements; (ii) enabling efficient communication
by reducing data duplication; and (iii) enabling additional improvements through more direct com-
munication and caching in the network [16].

It applies a data-oriented approach to Dataflow (not a connection-based one), i.e., computation re-
sults are named, immutable data objects and a Dataflow actor is an ICN consumer of its input data
and an ICN producer of its output data. Compute workflows are represented in the network as com-
pute graphs used to perform flexible load management and performance optimizations, realized by
using Conflict-free Replicated Data Types (CRDTs). Access to computation results happens through
regular ICN Interest/Data interactions with the usual properties: strong data authentication, location
independence, on-path data caching, and implicit multicast through Interest aggregation and data
sharing.

Using Interest/Data allows for a receiver-driven approach that avoids back-pressure and credit-based
flow control present in other systems such as Apache Flink. The convenience of this approach is
that consumers can request data according to its available memory and computing resources as we
introduce efficient queue management. Integration of this feature with the receiver driven congestion
control results in a stable dataflow that exploits available resources and prevent consumers from re-
source exhaustion. Moreover, pull-based ICN dataflow model is also feasible for resource constrained
devices.

In order to communicate, a Dataflow actor uses application-relevant names in a suitable namespace.
There is no mapping to lower layer addresses. Consequently, there are no connections, and the sys-
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tem is generally location-independent, i.e., actors are oblivious to the location of other actors, actor
locations can change during a distributed program execution, and the system is using the exact same
mechanisms to communicate, regardless of whether the system is used in a local network or over the
Internet. Location-independence grants more decentralisation to the system as no central orchestra-
tor is needed for mapping between applications’ namespace and network addresses. This makes the
deployment on bootstrapping, restarting, or scaling simpler.

As we aim for a decentralised orchestration with receiver-driven communications between actors in
the system, a synchronization protocol is essential to maintain a consistent view of the compute re-
sults between actors of the pipeline. To achieve this, we use the Psync synchronization protocol [17].
In Named Data Networking, Psync protocol is used to address data synchronization in distributed sys-
tems. Psync allows producers to publishing their new state in the namespace. In our case, producers
publish the names of the newly computed results, and consumers who are already subscribed to the
corresponding namespace can get these updates. Then using the published names, consumers create
the corresponding interests and send them to retrieve the data back. Management of the namespaces
between actors is handled within the compute graph definitions using CRDTs.

One key feature of the system is when the same interest is created and sent by multiple consumers.
One data object is needed to serve all the interests by exploiting caching in Named Data Networking
(NDN) networks, resulting in a more efficient system with less data duplication over the network.

Each actor uses an output queue to store newly produced data, advertise the data names, and send
the data packets to the actors fetching it. On the upstream side, actors also use an input queue to
buffer incoming data as a source for the computing function. These queues ensure that the computing
functions are always busy computing and never wait for incoming data, thus maximizing the sys-
tem’s resource utilization. It also provides insights for the function from the upstream producers and
downstream consumers.

As mentioned previously, with the ICN-based approach, there is no mapping between the applica-
tion’s name space and network addresses of worker nodes which is usually a task handled by a central
orchestrator. This mapping adds complexity to the dataflow deployment in different stages. For in-
stance, reacting to a node failure will result in halting the dataflow and re-configuring the actual flow
graph across the system. However, in our system, each actor is using the application’s namespace for
communicating. Thus, an actor failure would not require a change in the configurations as the system
is location-independent. This approach allows a fast reaction to the actor’s failure or scalability deci-
sion. Moreover, by adopting the ICN-based approach along with the Piccolo agent, we can delegate
tasks like resource allocation and scaling decisions to the actors and the corresponding Piccolo agent.
Every actor can be considered an orchestrator of its downstream consumers, and here it can detect a
failure or a slow/fast consumer and trigger a scaling decision without referring to a central node. Also,
the Piccolo agent of every node is responsible for the resource allocation requested by actors deployed
on this node. With these features, our dataflow system is implemented in a complete decentralized
approach overcoming the drawbacks of centralized orchestrations and a connection-based approach.
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Figure 3: ICN-based Dataflow System

4.3.3 Resource Allocation

As shown in Figure 3 every node in the system has a Piccolo agent assigned to it. The agent con-
tributes to the decentralisation of the system as it manages the resource allocation task in the system.
This way, instead of having a central orchestrator responsible for this task, every agent in every node
is aware of the available resources across the system. It can offer it to the actors deployed on the same
node, thus managing resource allocation in a decentralised approach.

A node advertises its resources in a separate namespace using Psync. Thus, every agent holds a
view of the infrastructure’s available resources. Also, the Piccolo agent gets information from routing
protocols. This way, the agent can achieve joint optimization in resource allocation as it decides
which available node is the optimal choice for the current scaling mechanism based on the available
computing and memory resources, network status, and how far the node is then it offers this resource
to the corresponding actor.

Every upstream actor can detect a bottleneck downstream. It can detect a slow/fast consumer, which
triggers a scaling decision. In addition, it can detect a failed consumer that requires a new instantiation
of this actor. We should note here that deploying a new actor instead of a failed one will not require
modification to the flow graph because actors request of named data objects will not change, which
will result in less complexity in the system while recovering.

When the actor takes a scaling decision, at this stage, it needs to communicate with its local agent for
further insights on the feasibility of the scaling decision, i.e., if there are available resources across the
infrastructure and which of these resources are the optimal target for an actor instantiation. When a
scaling decision is implemented on a specific node, the local agent is responsible for sending updates
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and synchronizing with other agents with its new resource availability.

4.4 Hybrid Orchestration for Distributed Computing Architectures based on
ICN

In this section, the limitations in centralized and decentralized orchestration of an ICN based in net-
work computing framework is presented. Following this, in order to tackle such challenges in orches-
trating and optimizing different aspects of the network, the concept and architecture of deploying a
hybrid orchestration model is introduced.

4.4.1 Problem Statement

As mentioned in the previous sections (cf. Section 4.1), centralized orchestration frameworks such as
Kubernetes have proven efficient in performing cluster management on container-based cloud-native
applications. While there are ongoing efforts of porting and enhancing such frameworks to push
towards communication infrastructure edge deployments (KubeEdge, AWS Greengrass), the hetero-
geneous and geographically distributed nature of edge infrastructure, and therefore, the management
of service deployments at the edge impose challenges.

Based on a loosely coupled communication model, the location independent addressing of ICNs [18],
e.g., using naming schemes to provide access to data directly instead of addressing the host first,
is promising to support distributed services at the network edge. Distributed application frameworks
extensions on top of ICNs such as Named Function Networking (NFN) [19] and Named FaaS (NFaaS)
[20] leverage the location independent addressing of ICNs to provide access to computation results.
The subsequent paragraphs uses NFN design rationale to describe the limitations.

NFN uses 𝜆 expressions to describe a compute workflow as part of an Interest packet. Resolution
strategies performed during packet forwarding identifies the most suitable node for serving the com-
pute request. Such decisions are taken on a per-request basis at each node using the local forwarding
knowledge of the node in a decentralized fashion. Although such a decentralized orchestration is scal-
able to larger networks, the lack of global network knowledge might result in a sub-optimal decision
making, for instance redundant computation of popular functions at neighbouring nodes resulting in
an imbalanced resource utilization [21]. Additionally, the name based routing although efficient in
decoupling the services from the compute nodes, is highly dependent on the naming structure the
consumer uses while requesting computations. As an example, a compute request for execution of a
function "func1" over data "data1" can be expressed with function first as "/func1(/data1)" or with
data in the first position as "/data1(𝜆.x call(/func1))". This results in a different choice of
execution node and hence different completion times and network utilization for different naming
structure for the same computation as consumers lack knowledge of the location and size of data and
function.
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In order to tackle the challenges set by distributed service deployments at the network edge of an ICN,
several centralized orchestration solutions have been introduced in the literature such as Amadeo
et. al [22]. The authors introduce a centralized orchestration entity in the network following the
Software-Defined Networking (SDN) paradigm to exploit the global knowledge of an SDN controller
to manage and deploy function at the network edge (e.g., using OpenFlow to manipulate forwarding
rules). While the resolution of identifying the most suitable compute node is presented on a per
request basis, as in default SDN, we argue that the additional time to consult an SDN controller is
sub-optimal for certain Internet of Things (IoT) deployments such as connected vehicle environments
with a high degree of mobility.

To overcome this limitation, we present the concept of a hybrid orchestration mechanism for dis-
tributed computing architectures based on information-centric networking. The concept employs a
logically centralized coordinator that gathers information from compute nodes in the cluster asyn-
chronously to assist the decentralized resolution mechanisms of the compute nodes.

4.4.2 Concept of Hybrid Orchestration

In distributed computing architectures based on information-centric networking, such as NFN, con-
sumers request for computation result using workflow expressions as part of an ICN Interest
packet. The underlying named-based routing and forwarding of ICN takes care to forward the re-
quests towards potential compute nodes. During forwarding, resolution strategies present at each
node assist in identifying if a node is suitable to serve the request or to forward it upstream towards
other compute nodes in the system. This resolution is performed on a per-request basis directly on
the data plane. While this design decision provides a high degree of flexibility in handling requests,
the local decision making might result in sub-optimal executions of functions and services as nodes
in such systems do not share information about their compute and network load.

The concept of hybrid orchestration overcomes this limitation by employing a logically centralized
coordinator that gathers information from compute nodes asynchronously, assisting the decentralized
resolution mechanisms of the compute nodes. In order to be able to assist the local resolution strate-
gies, the concept assumes the following features to be supported by the network/compute devices
within the Piccolo system:

• a handle to access data plane related information such as function request load, functions exe-
cuted, resource utilization (e.g., from a load balancer, or NFN forwarder).

• a handle to influence compute behavior (e.g., pull a specific function).

Figure 4 illustrates the interactions of the hybrid orchestration mechanism and the compute nodes/-
forwarding nodes. During compute request forwarding, an orchestration entity monitors compute and
forwarding nodes in the entire network under its scope over a period of time. Obtaining a global
view of the network, the orchestrator is able assist resolution strategies, for example, by instructing
compute/forwarding nodes to pre-fetch function byte code or data, instantiate or terminate function
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Figure 4: Hybrid Orchestration Architecture for ICN based Compute frameworks

executions. Forwarding tables are modified by the orchestrator as well to ensure that ICN Interest
packets are forwarded towards the right compute nodes.

In difference to the centralized orchestration solutions where the forwarding nodes communicate with
the orchestrator for every compute request resolution, the hybrid orchestrator operates asynchronously
to the existing resolution strategies by polling the network devices periodically on the control plane
and providing optimization suggestions to nodes.

Therefore, a control protocol, which is aligned to some of the Piccolo APIs, for hybrid orchestration
is developed operating on the following three phases.

• Compute Node Discovery: Every time a new compute node joins the network, it registers to
the hybrid orchestrator using a specific name prefix representing a specific namespace (e.g.,
"/orchestration/register/NODE_ID"). During registration, the compute nodes provide
a unique node identifier NODE_ID which allows the orchestrator to directly access data of a
particular compute node. This design is similar in principle to the Named Link State Routing
protocol of the ICN implementation - Named Data Networking [12], used to identify NDN
forwarders in the network [23].

• Monitoring Compute Nodes: The hybrid orchestrator, periodically monitors and polls the
compute nodes using their unique identifier to gain knowledge of the function demand, execu-
tion distribution, resource utilization at each compute node in the network. Based on all the
information gathered from the nodes, the orchestrator can propose changes or actions to the
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nodes (e.g., /orchestrator/NODE_ID/OPERATION while an operation might be fetching the
status.

• Enforcing optimization suggestions: Based in the optimization goal, the orchestrator can
suggest some actions to the nodes if there is a scope for improvement. For instance, if the com-
pletion time of a computation can be reduced by instantiating it closer to the consumer on less
loaded compute nodes, the orchestrator can instruct the compute node load and instantiate
the function. Further examples of such optimization decisions could be enabling or disabling a
function at a node, or fetching the popular data in off-path caches.

4.4.3 Preliminary Evaluations of Hybrid Orchestration

In order to verify the benefit that hybrid orchestration brings to an ICN based in-network compute
framework, we evaluate using simulations (cf. Section 6.1) the effect on reduction in completion
times with the presence of the hybrid orchestrator against an NFN network. Completion time is
defined as the time taken for resolving the consumer’s compute interest and responding with the result
of execution in a data packet. The simulation results show a reduction in the average completion time
with the presence of an hybrid orchestrator. This reduction in completion time can be attributed to
the decisions taken by the hybrid orchestrator to pre-fetch functions and instantiate them at compute
nodes closer but off-path to the direction of the packet upstream. Hence the distance travelled by the
interest to reach a suitable node for execution is reduced.

Additionally, the compute nodes with the available function and data may not execute the functions
right away due to the resources being blocked by other parallel computations. Such interests have to
wait for the resources to be freed and executed increasing the completion time. The hybrid orchestra-
tor identifies such heavily occupied nodes and pre-fetches functions at its neighbourhood to handle
dynamic compute demands. This reduces the waiting time of the interests as well as balances the
execution load on the compute nodes.

4.4.4 Discussion

The introduction of an orchestration entity in the network introduces additional communication over-
head for the control traffic in comparison to purely decentralized orchestration as presented as one of
the Piccolo research challenges (see Piccolo Deliverable D3.1 [3]). With an increase in the deploy-
ment of compute nodes, the control traffic is expected to increase as well. Furthermore, orchestration
entities monitoring the network devices will also increase, resulting in additional overhead. However,
the shorter the monitoring interval is, the more accurate are optimization decisions from the orches-
trator. Depending on the needs of the application, the algorithmic model at the orchestrator can be
implemented targeting the optimization of certain aspects of the network such as completion time of
compute requests, resource utilization, bandwidth efficiency and energy consumption.
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In summary, distributed computing architectures based on information-centric networking use de-
centralized resolution strategies to identify the most suitable compute node for a compute request.
While such a solution provides a high degree of flexibility to handle compute requests, the limited
local knowledge of resolution strategies to execute or forward a request might lead to sub-optimal
decisions, e.g., an increase in the completion time of a request. We presented the concept of hybrid
orchestration for distributed computing architectures based on information-centric networking that
employs a logically centralized coordinator that gathers information from compute nodes in the clus-
ter asynchronously and assists the decentralized resolution mechanisms of the compute nodes. The
design of the solution addresses aspects of Piccolo’s joint optimization research goal by taking com-
pute loads of node as well as the topological-aware deployment of applications and functions into
account, and supporting location-independent servicing at the network edge. We implemented the
concept in simulations and compared it against the Named Function Networking architecture. Sim-
ulation results have shown improvements in the completion time of computations between 16% and
51% for an increasing number of compute nodes in an hierarchical network deployment compared to
the default performance of NFN.

4.5 Orchestration for Smart Factory

The Smart Factory use case requires an optimized placement of IEC 61499 function blocks (Pic-
colo functions) given by means of a data flow graph within a network topology (see figure 5). This
placement is primarily based on the location of actuators and sensors for certain functions but also
on compute capabilities and topology considerations like node neighbourhood. While such a place-
ment happens first when a program is injected into a node of the network topology it can also hap-
pen dynamically on various topology changes like network link changes or location changes of sen-
sors. Hence communication between different components of the overall distributed system should
be location-independent to remove addressing complexity. In the light of these challenges the Pic-
colo infrastructure in the Smart Factory use case can be described as a culmination of ideas partially
described in 4.2 and 4.3. There are, however, many simplifications and also differences.

4.5.1 Addressing Aspects

Since Erlang/OTP [24] is used as technology foundation there is already a lot of utility present to man-
age communication between agents and functions since both are modelled internally as Erlang actors.
In particular Open Telecom Platform (OTP) provides a TCP based protocol for native communication
between Erlang entities and a distributed process registry which enables the communication between
named processes based on group membership and so called scopes. Such scopes can be used to de-
fine overlay networks which make them especially interesting when multiple layers of processes are
involved which serve completely different purposes (e.g. function placement vs. work piece manage-
ment). The use case currently has no need for hierarchical namespaces for communication between
Piccolo agents of functions, even though that can become a requirement later on. The process registry
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Figure 5: Mapping of IEC 61499 function blocks to network nodes

implements strong eventual consistency.

IEC 61499 applications are structured into composed blocks which represent groups of function
blocks (see figure 6) which again are modelled as an actor within Erlang. Hence the nodes of a IEC
61499 data flow graph can be mapped quite naturally to this process registry. Note that there is no
central management entity involved, the process registry is completely distributed. Compared to the
ICN design 4.3.2 this overall approach is still connection-focused (even though location-independent)
and sender-driven but simplified ICN like semantics can actually be achieved by using membership
in process groups for interest in named data.

Figure 6: Visualization of a IEC 61499 function block

4.5.2 Optimization Aspects

As function placement is a crucial aspect of the Smart Factory use case it is only natural to be aware
of the topology state, node resources and possible changes. Initially existing routing protocols can be
used to accumulate topology information (IS-IS), but it is also possible to move routing functionality
completely onto the application level within Erlang. It should be stressed here that link-state protocols
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are necessary to be used since they offer a view on the whole network topology on every node.
For distributing node resource information and the current placement of functions the Erlang native
distributed database Mnesia [25] is used initially. Both sources of information are part of an internal
information base which allows every Piccolo agent maintain a digital twin of the factory line which is
also used for work piece management. Further optimization layers can observe the information base
and the digital twin to execute changes in function placement. Since every agent is aware of changes
in the information base and is also capable of executing changes in function placement, it is necessary
to elect a leading agent (see figure 7). Note that optimization results are independent of the node since
the information base contains the same data everywhere due to the usage of distributed transactions
in Mnesia. This prevents in particular optimization cycles which may happen when different nodes
have different world views. However, Mnesia is not suited in the long term for critical applications
since it’s not partition tolerant and also not capable of handling complex topologies. It is probably
desirable to unify the distribution of all information into a single protocol later on.

Figure 7: Elected leader agent performing function migration

Optimization efforts are based on SLAs which are attached to each function but also on topological
properties of the IEC 61499 data flow graph such that for example neighbourhood between functions
in the data flow graph can be preserved. Hence there is also a SLA for the data flow graph itself. The
function specific SLAs contain for example connectivity requirements to sensors or actors while the
data flow graph SLA contains rather abstract optimization objectives like the mentioned neighbour-
hood properties. The agent is supposed to enforce these SLAs based on efforts of the optimization
layers. In a real world factory there will actually be two different types of functions when it comes
to optimization: rather statically assigned functions for actuators and sensors, and rather dynamically
placed functions which need no access to hardware. The reason for that is obviously the often static
placement of related hardware.

In the broader picture the function placement optimization is part of a larger system which also deals
with aspects of the work piece traffic management. The latter is not further discussed here since it is
very use case specific.
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4.5.3 Byte Code Distribution

Every node has all the Erlang byte code of the IEC 61499 application locally stored—even the byte
code for functions that the node itself currently does not execute. This also allows every node to
reconstruct the data flow graph of the IEC 61499 application for optimization. The byte code distri-
bution can be achieved through the Erlang code server which allows to share byte code initially when
the IEC 61499 application is injected from one node using Remote Procedure Calls (RPCs), updates
are also possible later on. Hence migrating byte code of functions is not an issue.

4.6 Summary

The interpretation of the term edge computing today is to a great extent limited to bringing executions
and computations closer to the consumer. Different available solutions used to this end today e.g.
KubeEdge or ioFog are ineffective due to their strong assumptions on the underlying communication
infrastructure. In this section, we have presented work that tackles limitations of today’s communica-
tion and compute infrastructure deployments such as scalability challenges of orchestration solutions
(cf. Section 4.2 and Section 4.4), location-independent addressing, and flexible data flow process-
ing (cf. Section 4.3 and Section 4.5) and their potentials to optimize the utilization of compute and
network resources within a Piccolo infrastructure.
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5 Resource management

Resource management is a key issue to solve for in-network computing. Resources (whether for com-
puting or communications) need to be allocated to the different tasks, nodes and tenants, in a way that
is reasonably optimal and resilient. The key concepts, state of the art and architectural approaches
are summarised in Del3.1 [3]. The following section presents some solutions that we are experiment-
ing with. They are in the context of different environments and orchestrator approaches presented in
the previous chapter, but should have wider applicability. Our first approach uses decentralised, auto-
scaling, within an ICN-based dataflow system. Our next approach uses an auction-based marketplace,
within the Trusted In-Network Computing (TINC) platform that is being used for the ’risk manage-
ment’ proof of concept demonstrator. Our time-sensitive networking work also studies the problem.
Future work will progress these experiments and seek insights that can lead to a more general model
and possibly to corresponding API updates.

5.1 Decentralised autoscaling within ICN-based Dataflow System

This section explains the decentralised scaling approach adopted in the system. After describing the
role of the Piccolo agent in 4.3.3 in the system, here we give more details about the autoscaling
mechanism, the tasks done by the actors, and how the agent is involved in the procedure. It provides
more information about how scaling decisions are triggered in a decentralised paradigm and what
parameters are taken into account. In this model consumers retrieve data from the producers by
exchanging interests, which can be regulated by the congestion control. In the following sections, we
describe both the scaling decision making and congestion control mechanisms.

5.1.1 Autoscaling

Scalability is a task handled by the actor and the agent. Every actor is responsible for the scalability
actions of its downstream consumers. As mentioned in 4.3.2, every actor maintains input and output
queues. The output queue is not only about storing computed results of the actor. This queue can
provide significant insights to the actor from its downstream consumers. These insights could detect
slow/fast consumers or even detect the failed ones.

Depending on the resources and output type, a configured threshold is set for this output queue. When
this threshold is reached, a function cannot process more data until performing some actions. A full
queue is interpreted in two ways by the actor. Either a consumer has failed, and this can be further
recognized from the loss of ACKs sent by the consumer to its upstream producer, or a consumer is
slow, and scaling should be triggered. At this stage, the actor sends a scaling request to the local
agent that can choose the optimal resource (if available) to offer to the actor. Agents across the
nodes use Psync to synchronise the available compute resources in a different namespace than the
compute results. This way, every agent is aware of the compute resources across all nodes. We refer
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to the compute resources as compute slots the agent uses to decide where to instantiate the new actor.
Furthermore, agents also take network resources information into consideration for decision making,
i.e., link capacity, available bandwidth, and forwarder resources.

Then the local agent will trigger the agent of the target node for the actor instantiation. An actor
instantiation on a node requires: the application’s sync prefix to subscribe to, the routing graph and the
current compute graph, its prefix, and its functionality. When triggering a scaling decision, the actor
should also produce watermarks to its downstream consumers. When receiving these watermarks the
downstream pipeline’s computation should stop for some time until receiving a new signal watermark
to resume the computation.

5.1.2 Receiver-driven Congestion Control

To avoid overloading the resources in our system, an additive-increase/multiplicative-decrease (AIMD)
congestion control mechanism is implemented by each actor. Actors hold a dynamic window of pend-
ing interests. This window would increase/decrease based on the timeouts and data packets it receives
back. However, the window size cannot exceed the available space in the corresponding actor’s input
queue. The input queue, which buffers the input data received and not processed yet, reflects the
actor memory and compute resources and how fast data is consumed from this queue. Thus, when
the pending interest window has the input queue as a maximum limit, it does not send interests based
on what it receives back only, but also it depends on the local resources. This results in a more stable
pipeline and avoids overloading the actor’s resources. When this window becomes far behind the
upstream updates, the upstream producer can detect this and trigger and instantiate a new instance of
this slow-consuming actor.

5.2 Auction-based marketplace within the TINC platform

TINC is a Trusted In-Network Computing platform that combines concepts of serverless comput-
ing, Trusted Execution Environments (TEEs) and overlay protocols in order to provide shielded and
outsourced computations. While in Piccolo Deliverable D2.2 the characteristics and architectural el-
ements of a TINC node were described, the following sections present the overall architecture of the
TINC platform and highlight the resource allocation feature that is done in an auction-based market-
place and could potentially be applied to the Piccolo architecture.

In the context of TINC, nodes have two different roles:

• Regulars: the simplest form of a TINC node that is capable only for (secure) computation tasks
and may not always be available - referred as TINC nodes. These nodes are connected directly
or indirectly to Mediator nodes in order to receive function tasks.

• Mediators: similar to regular TINC nodes but with the responsibility of being always available
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in order to offer relay properties to regular nodes that cannot be directly connected and also form
markets (marketplaces) for resource allocation as presented in the following sections. Note that
each mediator can have only one market.

The system assumes that there is an infrastructure owner that is called In-network Computing Provider
(INCP) 5 and offers computation elements. Additionally, there are Application/Service Provider
(AppSP) that generate/develop applications/functions and also data owners that have/gain access to
the post-processed data (data owners can also be application providers). To trigger computations on a
TINC node the AppSPs use a service called TINCmate in order to produce manifest files (see Piccolo
Deliverable D2.2) that describe functions and can be consumed by TINC nodes and start the function
execution. The function is considered as a secure Docker container that executes the function task
inside an Intel SGX enclave [26] to protect it from unauthorized access and manipulation.

The major element of a node (both mediator and regular) is the TINC-engine (or TINC) that is a
daemon process, which connects the current node with other nearby nodes and is responsible for im-
plementing various TINC operations like resource allocation, computation configurations, outsourc-
ing of incoming tasks and bootstrap function processing. Each Mediator forms its own marketplace
which also advertises. Regular nodes can subscribe to a market in order to be able to receive compu-
tation tasks. The protocol used by all the TINC nodes is "GossipSub" which is an extensible pubsub
protocol, based on randomized topic meshes and gossip [27]. The aforementioned stakeholders and
the overall architecture is depicted in Figure 8.

Each Mediator node can optionally include an attestation service that is responsible for ensuring
the correctness and freshness of the application code and data while also creates sessions for each
computation in order to maintain and transmit each function’s secrets in a secure fashion (see section
5.2 Deliverable 2.2). Note that this service is always available as a component to TINCmate and a
TINC node can communicate with that attestation service in order to receive functions’ secrets and
evaluate the measurement of a function to be executed in a platform. Therefore it is crucial to point
in the manifest file the agreed attestation service.

The TINC-engine consists of two major components which are used for the inter-communication of
the nodes and the actual orchestration and function placement procedures. The first component is
the overlay agent which covers operations like node discovery, identification and resource advertise-
ment. The overlay agent is also provided as part of the TINCmate service since it presents a topology
to the service in order to choose a node to send function deployment requests. The second compo-
nent is called machine and is responsible for the resource allocation, function configuration and task
outsourcing.

5An INCP is similar to an Infrastructure Provider but with specific responsibility in offering computation instead of networking
operations
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Figure 8: TINC system architecture

5.2.1 Resource Allocation through Auctions

In Piccolo Deliverable 3.1 we described a novel market-based resource allocation mechanism [28]
that leverages from Vickrey-English-Dutch (VED) auctions [29] on the micro-level in order to provi-
sion resources over a geo-distributed set of nodes. Each node can potentially act as a market holder
in which the available resources (in the case of TINC these are called functions/Execution Environ-
ments (EEs)) are offered as items while the users that want to execute/acquire those resources are
called bidders. The auction’s purpose is to derive a price vector along with item-bidder assignments
that indicate a competitive equilibrium, i.e. the auction has to satisfy the bidder’s demand (and re-
quirements).

The ultimate goal of the operation is to allocate the available resources based on demanded and
supplied values (bids and prices) in order to reach an equilibrium in the market (i.e. the bidders cannot
acquire their assigned items for a lower price in any other competitive equilibrium). The repetitive
nature of this mechanism (i.e. the market needs to always reach a stable state) allow to reduce the
execution time of the procedure. For instance, if the supply and demand conditions of the market
remains the same, the equilibrium prices of the next time-slot will be similar to the previous ones
and therefore the auction will terminate immediately since it initiates from the equilibrium prices.
Moreover, the mechanism assumes truthful bidders since they collect an item in its minimum possible
price and do not deploy complicated strategies that would lengthen the execution of an auction.
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In TINC nodes can have two modes of execution in terms of resource allocation: participant or
auctioneer. In general, the participant is a node that subscribes/participates to a market and provides
its resources, while the auctioneer acts as a higher rank node that receives clients’ requirements and
executes auctions. In more detail, a market is owned by an auctioneer or a group of auctioneers6 that
belong to one INCP.

Markets are topics (e.g. from publish/subscribe mechanisms) where participants would advertise their
resource map. A resource map is a combination of static and dynamic resources and even properties
of a node that makes them available in a market that participates. Examples of such resources are the
ability to handle sensitive applications (i.e. execute tasks in a TEE), CPU and memory information,
available functions/EEs and also currently active functions/EEs. Those details are not only mapped to
aid the auctioning procedures but also sorted based on a significance level that is derived from a node
owner (INCP). Pricing of such resources are left to the node owners and are given upon bootstrapping
a node7.

Based on this resource map each node shares a graph of resources and awaits a client’s request for
allocation. The procedure of accepting a request is divided in three phases:

1. Resource Discovery: Discovers which nodes meet the application’s requirements and ultimately
would introduce balance on the market. An important step prior to receiving client requirements is
to bootstrap the network, i.e. identify the markets to connect to in order to exchange resource maps.
This step is achieved through a public marketplace which acts as a list of available markets. That
list is used by the auctioneers to publish their market details. On the other hand, the participants will
identify the markets that suit them better and connect to them (i.e. subscribe). For a participant to pick
an appropriate market is primarily a configuration step that is performed by the node owner(INCP).
After the subscription of a participant to a market8 it will receive resources of other participants in
order to form its resource map.

2. Allocation: The allocation step involves the creation of a candidate list among the participants of
the market that an item (function request) is auctioned. The candidate list is a sorted set of nodes
that meet the requirements of a function. This list is formed after a function request has reached the
auctioneer and an auction has been initiated. Note that the function request is the TINC manifest that
includes also a bid value for the function requested. The winner is the first candidate on the list since
this node will not only meet the requirements of the application but also contribute to achieving an
equilibrium in the current market. The function request ultimately is handed over to the "winner"
node.

3. Configuration: The configuration step involves the actual invocation of the function/EE9 after it
has been received by the "winner" node. This step is considerably influenced from the virtualization

6The auctioneer nodes are set by the INCP but by default each mediator is an auctioneer.
7Resource pricing: TINC uses the function/EEs as a resource price, i.e. each function/EE has a pre-configured initial price

that is adjusted each time an auction lifecycle ends.
8participants of a market can be subscribed to other markets
9The EE is a concept of Piccolo that is inherited by TINC to serve Docker Images as execution environments. For more

details see Deliverable 2.1
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Figure 9: TINC resource allocation mechanism

technology used and the boot configuration time it requires. In TINC we use Docker containers that
impose a mediocre execution latency (depending on the function). However, since TINC utilizes
TEEs and provide attestation features the execution time is also affected by the attestation protocol
and the limitations of the TEE technology that is used10.

In Figure 9, we depict the provisioning procedure of TINC upon the arrival of a new function deploy-
ment request in the market. At first a client sends a request to its local market. The request is directed
to a corresponding TINC agent (step a) that is a small service that generates manifest files based on
function requirements and bids on behalf of the AppSP. This agent will act truthfully and set the bids
equal to the actual gain, i.e. meet the function requirements. To set those bids a history of bids is taken
into account (step 2) and ultimately generate the manifest file and delegate it to an auctioneer (step
3). The next step (step 4) involves the execution of a VED auction and a feedback phase about profit
opportunities to INCP (step 5) in order to engage additional resources to the market (step 6). Steps 5
and 6 are optional and are not executed for every auction. Instead, the indication of opportunities is
done in intervals. The final step (step 7) concludes with the allocation of VM resources for the client
at a specific price. The last step is shown in dashed line as the auctioneer forwards this information
to the agent that initiated the actual function deployment. This is done in order to periodically inform
the AppSP about its expenses in the market.

5.3 Hardware resource management

Hardware resources can be grouped into different categories:

1. Memory: this resource is easy to manage. Hardware memory is limited for data storage, code
memory and also entries in tables such as hash tables, Content Addressable Memory (CAM) entries
lookup tables etc.

2. Compute Resource: this resource is well known with measures such as Mega Instructions Per
Second (MIPS) or Floating point operations per second (FLOPS) and others. However, in practice it
is difficult to assign a MIPS value to a process and to estimate the remaining processing power if 5
tasks are already running.

10The TEE technology that is used is Intel SGX and has an application physical memory(protected) limitation of 93MB ([30])
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Figure 10: Piccolo Node Configuration Agent translates Flow Requirements into HW Parameters

3. Capacity: this limited resource is related to the transport capacity of a link, a transmission line, an
on-chip bus etc. It is a data rate measured e.g. in bits per second or packets per second. In case of time-
slotted transmission such as T1/E1, Synchronous Digital Hierarchy (SDH) the capacity is translated
to a given number of slots. The real-time Ethernet technology Time-Sensitive Networking (TSN) is a
mixture of both, transport capacity and time-slots.

While items 1 and 2 are well known, management of item 3, the capacity, is in focus within this
project. Both depend on each other. Reserved time slots take bandwidth from the packet based
transmission and increase the packet jitter of the statistical traffic. The task of hardware resource
management is done by a Piccolo Agent as shown in Figure 10.

The task of the Piccolo configuration agent is not trivial, as a new flow shall not influence the parame-
ters of existing flows with already granted QoS parameters. This must be checked for every new flow
by an acceptance algorithm.

To solve this challenge a practical approach will be followed:

1. a default configuration of time slot period and statistical period will be worked out.

2. a reasonable number of slots for the time slot period will be specified and suitable bandwidth
granularity, e.g. 100 kb/s as ‘bandwidth token‘ for the statistical period.

3. a small number (e.g. 4) of QoS classes will be defined and default number of bandwidth tokens
assigned to each.

The goal of this procedure is to replace complex bandwidth-versus-delay calculations by simple as-
signment of bandwidth tokens. Acceptance of a new QoS flow will then be simplified to checking if
there are enough free bandwidth ’tokens’ in the respective QoS class. For the TSN class, the check
will be for free time slots.
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6 Other Elements

In this chapter we cover some other miscellaneous topics. Firstly, a description of the simulation
tool developed to evaluate the hybrid simulator in Section 4.4.3. Secondly, a summary of the ’telco
edge cloud’ concept, which we have contributed to at the GSM Association (GSMA) - the idea is a
federation of operators that expose their edge compute resources in a common, consistent way; the
concept can be extended to include in-network computing. Finally, some experiments to ascertain
whether an operator’s CV-OAM capability could be provided using Erlang.

6.1 In-Network Compute Simulator

In this section, we provide a description of the development of a simulation tool available to eval-
uate orchestration and management mechanisms with respect to in-network computations/function
deployments based in Information-Centric Networking. The tool is used to evaluate different aspects
of in-network computing systems and was used to generate the results presented in Section 4.4.3.

Within the ICN networking community, there have been several simulation tools introduced in the
past including ndnSIM [31] to simulate the behaviour of a Named Data Networking deployment.
ndnSIM is an extension to the famous network simulator tool ns-3 [32] that supports an NDN specific
protocol stack bundle. It allows to combine well established network functionalities (e.g., wireless
communication, Internet Protocol support, etc.) supported by ns-3 together with aspects from Named
Data Networking. Based on the presented simulation tools, we developed incSIM 11 – in-network
compute simulator – as an extension for ns-3 making use of principles from ndnSIM as well. As of
now, incSIM allows to define stateless, monolithic functions/computations deployed within a tuneable
network topology, and to evaluate effects of those deployments in the overall system. Examples for
such effects include the completion times of functions/computations regarding their deployment as
well as investigations on the effects between host-centric (e.g., Internet Protocol) and data-oriented
(e.g., using NDN protocol as part of ndnSIM) deployments. As in today’s version of incSIM, the
simulator supports features to explore the orchestration and management mechanisms and analyse
their effects on the deployment structure. Examples of parameters to be modeled within the incSIM
tool include:

• option to define different entities: data, functions, data/result consumer, compute nodes, data
producer (data to operate on), and function producer (byte code)

• option to influence the behaviour of entities: request load patterns, compute capabilities of
individual nodes, function properties required for execution, network link properties, etc.

• option to define different topology deployments of the mentioned entities provided by a topol-
ogy generator (today limited to hierarchical deployments with point-to-point connections)

11https://github.com/boschresearch/incSIM
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• option to define initial deployments of functions on compute nodes

As the incSIM is based on ns-3, it uses the abstraction model of that network simulator. All nodes
within the ndnSIM are based on the ns-3 model of a Node object. This object was extended to
INC Node for simulating incSIM compute. In incSIM, nodes can be configured as consumer nodes
requesting for data or a compute result, compute nodes hosting and executing functions, function
providers providing access to byte code representations of functions/computations, as well as data
providers providing the actual data to apply to a function/computation. In the current simulation set
up, the compute consumer nodes are also configured as data providers simulating the behaviour of
user edge devices. Figure 11 illustrates three examples of the implementation of nodes within incSIM.

Figure 11: The different node types and their configuration in incSIM

The data/result consumer nodes (see Figure 11 (c)) raise (compute) requests according to a request
configuration pattern tuneable within the simulator. Requests are processed by network forwarders
and compute nodes until the most suitable node for execution is identified. In the literature, there are
already proposals for distributed computing frameworks on top of ICN, including Named Function
Networking [33], Named function as a service (NFaaS) [20] or Compute First Networks [34]. To
achieve this, we implemented the resolution mechanism of NFN (further details are in [33]). The
NFN resolution engine is present on each compute node responsible to identify the most suitable
node for the processed compute request based on the availability of the local data and function byte
code. The supported resolution engine is implemented in a modular fashion which allows to replace
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the mechanism with other proposals in the future, e.g., NFaaS or in-network compute mechanisms.
If compute nodes require additional data/information such as the byte code of the function to be
executed or the data for which the function should be applied to, the compute nodes are able to fetch
those data from function/data producers in the network.

Besides the support of simulating the effects of function/service deployments, the incSIM focuses
on mechanisms to improve the overall resource utilization in the overall system including network
and compute resources. Therefore, an orchestration module (Figure11 (a)) is available to investigate
the influence of orchestration algorithms (here: centralized orchestration mechanisms are supported
right now). The module consists of two types of applications: (i) a centralized orchestration entity
that executes optimization algorithms, and (ii) an orchestration API entity present at each compute
node to be able to share compute node related information (e.g., functions hosted, packets processed,
etc.). The monitored information is made public available in the system (e.g., for a centralized com-
ponent) by offering two control plane interfaces accessible via both the NDN transport protocol or
the UDP/IP transport protocol. In this version of the orchestration module, the centralized component
frequently fetches status information from all compute nodes in the system which can be configured
in the simulator as well. Based on this information, the orchestration/management application can
execute specific orchestration algorithms targeting different optimization goals. Current implementa-
tions offer a modest orchestration strategy to reduce completion times of computations in the system
by bringing them closer to the consumer and enforces them using the control plane API offered by
the orchestration API.

In order to investigate the performance and overhead of every application in incSIM, different trace
components are available. Examples for traceable data includes the consumer response ratio, compute
request-response round trip time, computation load at compute nodes, or the orchestration packet
overhead for status information sharing as well as action enforcement.

6.2 Telco Edge Cloud - GSMA’s Operator Platform

The concept is that all mobile operators should expose their edge compute resources in a standardised
and consistent way, so that enterprises and application developers can more easily access edge cloud
offerings. Thereby, operators can better serve the global demand for innovative, distributed and low
latency services.

From the Piccolo perspective, our belief is that this concept will be (and should be) extended to in-
network computing. The telco edge cloud can be seen as an initial step towards in-network computing.
It is also a test case about how a federation of operators can work - whether it’s simply about a
common technical interface, or whether it also includes a deeper technical or commercial relationship.

The concept has been developed by GSMA, which is an industry organisation that represents the
interests of mobile network operators worldwide. GSMA calls the commercial concept the "Telco
Edge Cloud" and the technical capability to achieve it is called the "Operator Platform".
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The Telco Edge Cloud is particularly targeted at enterprises. GSMA states the particular benefits
that the operators can bring (implicitly, compared to the hyperscalers): the vast local footprint of
operators, meaning that a service can be provided locally, so as to improve its quality and reduce the
amount of data uploaded; the operators’ excellent position to deliver on data sovereignty principles
and to preserve the endusers’ privacy; their competence to provide high-reliability services; and so
on.

The Operator Platform’s architecture and requirements are introduced in a GSMA whitepaper, whilst
a "permanent reference document" describes the next level of detail.

The most important conclusion is that there needs to be a simple and universal way for Applica-
tion Providers to interact towards the edge computing platforms. This NorthBound Interface (NBI)
exposes the edge computing capability, integrated with the network services (meaning the capabil-
ities that a mobile operator already provides, such as security, mobility and managed connectivity,
and knowledge about the enduser, such as their location). A universal NBI ensures that application
developers can "write once, deploy anywhere", onto any operator.

There also needs to a common interface between operators East West Bound Interface (EWBI). This
allows operators to federate (cooperate) - so that a customer (of one operator) who has roamed will
access the edge compute of the nearby operator ("local breakout").

Figure 12 shows the main interfaces that GSMA has defined. The GSMA has also defined the ar-
chitectural approach, for example a "separation of concerns" of the OP and application providers -
which means that the latter requests the service, with some quality of service parameters, whilst the
OP decides the best way to deliver it (for example, which edge nodes are used).

The GSMA also proposes that the best body to do the actual standardisation of the APIs and the
functionality to achieve the various requirements is 3GPP, with cooperation from ETSI MEC for
some aspects of the edge node. This activity is underway. Further, there have already been some
trials, whilst more are under discussion.

Piccolo Partner BT has been heavily involved in the GSMA’s efforts. We have also described the NBI
using Swagger, which is a tool that implements the OpenAPI spec, and is becoming popular as a way
of describing, producing, consuming, and visualizing REST interfaces.

Further details about the GSMA’s work - whitepapers, documents and videos about trials - can be
found via their webpage [35] .

6.3 Erlang experiments - Erlang for CV-OAM

In this section, we provide a description of the experiments conducted to investigate whether Erlang
is suitable for implementing a CV-OAM environment that will serve or be provided by a Network
Provider. Erlang was evaluated by investigating its built-in capabilities that could support CV-OAM
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Figure 12: Operator Platform high-level architecture for edge computing

and by using it to create code that supports CV-OAM use cases.

Continuous Verification (CV) is used today to check that the network’s performance is satisfactory.
A usual method of CV is to generate test packets and transport them over the network. These ping
packets are used at the receiver’s side to derive network performance characteristics. However, in
practice CV is configured and rarely modified afterwards due to implementation limitations inherent
in hardware. CV is done at a slow rate and CV protocols are typically not event triggered but run
continuously. Dynamic SLAs are hard to support since the CV rate cannot be adjusted in response
to new network conditions. Moreover, more complex CV tests cannot be used to provide better
resolution where they are needed for error detection, since programmability is not available in the
existing implementations.

Erlang has certain features that are interesting for supporting more flexible CV-OAM use cases. The
most important of which is the ability to dynamically update the running code. This would enable
the dynamic change of CV according to new SLAs. Furthermore, since Erlang is a programming
language, it is possible to add CV routines where the CV rate is adjusted per the network conditions
e.g., rates increasing when the network traffic load is increasing. Moreover, the Erlang VM’s dis-
tributed capabilities are very useful for scaling the monitoring performance per connection link. Last,
Erlang has been designed to make clustering of nodes as transparent as possible to the user/developer
by managing node connectivity and an Erlang application’s distributed processes addressing through
its VM. Such capabilities allow for automatic node catalogue population, a problem that is important
to Telcos since the vast size of their equipment and its interconnections a lot of times have to been
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catalogued manually.

To investigate Erlang’s capabilities a small experiment was setup with the option to be expanded if
the results were promising. The experiment consisted of 3 Raspberry Pi devices connected through
a switch in a star network topology. Each Raspberry Pi was operating Raspbian, a Linux based
Operating System, and each had the latest Erlang language and Erlang VM installed on them. On
each Raspberry Pi an Erlang node was started, and all 3 nodes were setup in a cluster using Erlang’s
built-in clustering capabilities.

At first a simple end-to-end PING engine for CV was created with each Erlang node hosting a user
coded message sender and a message receiver function. Erlang allows the exchange of messages
between functions using each function’s Process ID (PID). When a cluster exists, where there is
more than one node, PIDs are still used for the message exchanges. The Erlang VM manages the
PID mapping between the different nodes. What was discovered was that although Erlang does
provide PING functionality through net_adm:ping(nameofnode) it doesn’t produce a roundtrip time.
Wrapping net_adm:ping in a timer function, timer:tc(net_adm:ping(nameofnode)) did provide the
roundtrip, but it was also measuring the code execution time of net_adm:ping. The solution for this
was programmatic. New functions/processes were created in each node that allowed the message ex-
change between two nodes and measuring of the roundtrip time, but also the time each message took
to traverse towards one direction of the link. Thus, greater resolution of the roundtrip was achieved.
Extra code was added that depending on the variation between the send and return time, it was chang-
ing the rate of the messages exchanged while messaging the Erlang nodes that were involved about
the rate change. Furthermore, a function/process called Messaging Queue that stores any message
sent to it was created. Messages in the Message Queue were printed in the terminal. As was expected
with Erlang being a programming language and with the built-in clustering capabilities it does pro-
vide CV flexibility. The next step was to include further network and node diagnostics e.g., physical
node network ports load, thus further capabilities investigation was required.

The attempt to add more network and node diagnostics revealed that Erlang provides the following
functions oriented for network packets creation, exchange, and Erlang cluster operation. At the same
time, it provides no access to network hardware parameters or metrics and treats the physical network
as transparent for the user and the developer, however both of these are important for a Telco/Network
provider.

• Net: Network interface routines for packet creation and exchange.

• Net_adm: Limited inter-node administration routines, e.g. ping and hostname.

• Net_kernel: Kernel level registered process with routines for setting Erlang distributed opera-
tion

• Gen_tcp: Interface for the operation of TCP sockets.

• Gen_udp: Interface for the operation of UDP sockets.
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• Inet: Provides access to TCP/IP protocols and routines like IP parsing, getifaddress, address
and port number for sockets

• Socket: This module provides an API for network socket. Functions are provided to create,
delete and manipulate the sockets as well as sending and receiving data on them.

On the side of node monitoring capabilities Erlang fares better, although Information Technology (IT)
is still very limited. It offers the OS_Mon application, a built-in application which provides the
following three processes.

• Cpu_sup: Supervises the CPU load and CPU utilization.

• Disksup: Supervises the available disk space in the system.

• Memsup: Supervises the memory usage for the system and for individual processes.

Despite OS_MON offering node performance information, there is a total lack of network monitoring
functionality like traceroute or tcpdump, which is very important for a Telco/Network provider.

Erlang also offers two tools that could be used to access information from the host Operating System
(OS). OS.CMD and erlang:open_port. Both functions can be used to execute host OS commands.
An example code was written using both methods. It called the Linux route -n command, writing the
output in a file and at the same time parsing the output within Erlang. The parser had to be coded
from scratch.

In both cases the ease of use that the pre-existing Linux tools provide is very useful for providing the
network information into the Erlang CV code, however, for every different Linux command a different
parser must be created. Furthermore, every time the commands are updated the corresponding parsers
must be updated too. Increasing the tool maintenance costs and increasing chances of system errors.

As part of the CV-OAM, when network conditions deteriorate, the deployed edge applications might
need to be moved to another node. During the experiments Erlang capabilities like process links,
monitors and supervisors were tested to investigate the resiliency of Erlang’s processes. Motivated by
Erlang’s ability to failover processes to other nodes, running processes migration to other nodes was
investigated. Initially, by calling manually the failover processes and as a second step by manually
trying to change the failover node priority order. Both were not possible because the failover/takeover
mechanism is setup in the configuration prior to starting the application and is immutable. Another
approach was to separately spawn a process from one node to another node, however it also failed.
That is due to the need during the spawning action to define a code module that contains the code
of the migrating process on the new node and that essentially requires the codebase of the migrating
code to pre-exist to the new node.

We investigated two other ways to achieve migration. The first is to create an Erlang code method
where three things need to be considered:
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• Process state

• Process registered name (PID)

• Messages Queue

The process state can be paused between messages sending and the PID can be registered in a central
register allowing reuse in a new node. However, the message queue is trickier because messages can
be lost if they are mid transition when migration happens, or when they are stored in the host OS of
the node to be migrated.

To bypass these issues, the second method is to program these capabilities into Erlang by modifying
the language itself, which of course can cause issues since maintenance will not be supported by the
official version.

In the end Erlang has benefits but also weaknesses for the implementation of CV-OAM. Programma-
bility is its biggest asset together with its clustering mechanism. It provides the capability to adapt
according to SLAs and host performance or due to events. However, Erlang does not provide any net-
work monitoring capabilities, but simply the most basic of ingredients that the network operator can
use to monitor the status and performance of the network. Lastly, its migration capabilities of failover
and takeover, do not leave much room for dynamic migration unless the applications themselves are
written with migration in mind. Erlang despite its very promising capabilities, it is not a suitable tool
for the implementation of CV-OAM for Telcos/Network Operators.
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7 Conclusions

This deliverable has illustrated Piccolo’s main architectural concepts with respect to distributed com-
puting by describing different embodiments and corresponding experiments by the project.

Piccolo is addressing different use cases and environments, from a telco edge to factory floors.
Whereas each of the corresponding developments follows the general Piccolo agent model, they pro-
vide different approaches to distributed computing.

7.1 Orchestration

In most mainstream distributed computing systems, resource management is addressed by orchestra-
tion systems such as Kubernetes. Whereas existing systems are typically developed for rather homo-
geneous environments, we have shown in Section 4.1 how Piccolo can provide semi-decentralized
management by fragmenting edge infrastructure into multiple federated clusters. In section 4.2, we
have described an approach to autonomous management and self-organizing capabilities for appli-
cation services that can be implemented as an extension to existing virtualization technologies (e.g.
virtual machines, containers).

The ICN-based Dataflow system introduced in Section 4.3 is an example of an inherently decentral-
ized system that is aimed at managing resources without an explicit centralized orchestrator. From
a Piccolo perspective, the Piccolo agents would coordinate directly, without necessarily requiring
changes to local APIs to actors.

The Hybrid Orchestration approach described in section 4.4 employs a logically centralized coordina-
tor that gathers information from compute nodes asynchronously, assisting the decentralized resolu-
tion mechanisms of the compute nodes. Note that in centralized orchestration solutions the forwarding
nodes communicate with the orchestrator for every compute request resolution. By contrast, the hy-
brid orchestrator operates asynchronously to the existing resolution strategies by polling the network
devices periodically on the control plane and providing optimization suggestions to nodes.

The Smart Factory application as illustrated in section 4.5 provides yet another environment that is
characterized by specific requirements (reliable factory machine control in an edge-only network).
Corresponding systems are modeled as IEC 61499 function blocks which are represented by Pic-
colo functions that need to be placed in a given compute infrastructure. This placement is primarily
based on the location of actuators and sensors for certain functions but also on compute capabilities
and topology considerations like node neighbourhood, employing location-independent naming/ad-
dressing. Optimizing the placement can be done by specific routing protocols or application-level
extensions in the Erlang execution environments.
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7.2 Resource Management

Piccolo has developed several approaches to resource management in distributed systems, and in this
deliverable we have described how some of the Piccolo developments approach different aspects of
resource management, such as compute resource allocation (for scaling etc.) and network resource
management.

With respect to allocating compute resources, Piccolo has developed distributed approaches as the
ICN-based Dataflow System (section 5.1) and the auction-based allocation system in the TINC plat-
form (section 5.2).

With respect to network resource management, section 5.3 describes the resources that are relevant
on one TSN-enabled node. In section 5.1, we have described the receiver-driven congestion control
scheme in the ICN-based Dataflow system that enables joint optimization of compute and networking
resources by adapting data interest rates to the performance of the compute function in a Dataflow
node.

7.3 Next Steps

In this document we advance the work in various practical implementations, concentrating on two
main topics: orchestration and resource management - with sub-sections about the detailed work for
each of the proof of concept demonstrators. At this point we have taken a bottom-up approach, in
order to get the demonstrators working. It also shows that the Piccolo mechanisms and APIs can
be implemented on a variety of platforms and programming environments. One next step is to re-
integrate the learnings from the implementations back into the more conceptually unified framework
of the top-down architecture.

Existing frameworks make strong assumptions about the underlying infrastructure for optimal opera-
tion, which was found to be a limiting factor when porting to edge infrastructures [8]. For example,
most frameworks requires all processing resources to be in the same cluster (and therefore directly
reachable from each other), just like data centres, which does not always hold true for processing units
in the edge. The most inhibiting factors affecting the performance of existing orchestration frame-
works in edge environments are: (i) the ability to handle the heterogeneity of the devices making up
the infrastructure (ii) the scale of devices that span large geographical regions and (iii) different man-
agement entities that may collaborate together to contribute their resources to a larger infrastructure.
Our on-going work aims to alleviate these inhibiting factors.

The next steps for the various activities described in this document include the following:

Next Steps in TINC’s resource allocation through auctions: We aim to extend the security fea-
tures of the auction-based mechanism by identifying nodes that act untruthfully by placing bids for
resources that are not equal to their actual gain in terms of QoS in order to disrupt the market’s
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equilibrium. Effectively we will develop mechanisms that define strict policies of bid placement and
perform decrease of a node’s reputation.

Smart Factory next steps: As explained in Del2.2 [1] implementation of the Piccolo node for a
Smart Factory has not started yet. Hence aspects of distribution explained in this document are also
part of implementation efforts over the next months. In terms of concepts, the agent leader election is
not very mature at this stage and will certainly to be revised. By far the greatest challenge is the idea
of a unified Piccolo protocol which reflects on topology observation aspects as well as on function
placement, and maybe even routing of compute as described by other use cases.

Next Steps in ICN-based Dataflow System: We plan to make the system adaptive to the deployed
application, i.e., optimize the system’s configurations according to the use case. Moreover, as scaling
decisions are handled in a decentralized approach, we aim to enhance it by considering more metrics
and evaluating the effect of these decisions on the whole system. Also, further work will be done on
the resource allocation and actor placement when recovering from failure or scaling an actor.

Next Steps for Telco Edge Cloud: GSMA is currently discussing how it works with open source and
developer communities, such as Linux Foundation, and what its role should be. The aim is for the
technical and commercial realisation of a federation of operators’ edge clouds. We will continue to
contribute to this activity.

Next Steps for CV-OAM: The research on CV-OAM for Telcos will look into eBPF and how can
it be used to extend monitoring capabilities for different SLAs, using its inherent ability to extend
kernel code without changing the kernel source code or loading kernel modules.
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